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ANNOTATION

Aerospace Vehicles as Objects of Control. Shatalov, A.S.,
Topcheyev, Yu.I. and Kondrat'yev, V.S. Mashinostroyeniye, 1972,
240 pp.

This book examines the dynamic equations of motion of vari-
ous types of aerospace vehicles with two-and three-dimensional
arrangements of the wings and control surfaces and of types with
plvoting wings and gasdynamic controls. The equation systems
are presented for a complete dynamic scheme that takes account
of the motion of the center of mass, rotation about the center
of mass, structural elastlclty, and motions of liquids in tanks.
The equations are linearized to simplify the eguation system.
This has made it possible to convert to the transfer functions
and control structural diagrams of the vehicles, so that recl-
procal effects between channels could be taken into account in
lucid presentation.

The dynamic characteristics of the vehicles are presented
for standard input disturbances, which are represented in the
form of Laplace and z-transforms. A matrix form of desecription
of the vehicle is proposed as a means of taking account of the
nonstationary nature of the controlled object. These character-
~ istics make it possible to identify the object on the basis of
experimental data. ‘

The book is intended for design engineers engaged 1n the
design of aerospace-vehicle control systems. It will also be
useful to college graduate and undergraduate students in the
corresponding specialties. :
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FOREWORD (5

Control of the flight of an aerospace vehlcle consists in
maintaining the desired trajectory of its center of mass and
orientation and stabilization with respect to the center of
mass. These functions are performed by an automatic or semi~
automatic control system in which the aerospace vehicle is the
object of control.

The dynamic characteristics of an aerospace vehlcle as a
controlled object depend on a number of parameters: mass,mo-
ments of lnertia, aerodynamic coefficients, and so forth.

These parameters are the initial basis for writing the differ-
entlial equations that describe the dynamics of the vehicle's
motion or its dynamic characteristlcs as functions of time. To-
gether with these primary characteristics, there are also so-
called secondary (derived) characteristics, an example of which
is found in the galin and phase freguency characteristics, which
establish relationships between harmonic signals at the output
and input of the aerospace vehicle [4, 5]. In these character-
istics, the angles or angular velocities of deflection of the
controls and the variation of engine thrust are treated as In-
put signals. The output signals are the angle and angular ve-
locity of rotation of the vehicle's axes, g-force, the linear
displacement of the center of mass, and the changes 1n the al-
titude and direction of flight. All of these signals are pres-
ented in the form of vectors or vector projections. In writing
the dynamic equations of aerospace vehicles, therefore, consld-
erable attention is glven to selection of the coordinate system
in which the motion of the vehicles 1s examined.

The book discusses four types of coordinate systems (earth-
based, body, drag, and semiattached body), use of which makes 1t
possible to write systems of dynamlic equations of motion for /6
gerospace vehicles under various conditions of use. The result-
ing system of differential equatlons is nonlinear; considerable
mathematical difficulty is encountered in its solutlon or anal-
ysis. To surmount them, the systems of nonlinear differentlal
equations are linearized with respect to reference trajlectories
by the method of small lncrements, sO© that the motion of the
vehicle can be resolved into short-period and long-period mo-
tions. If 1t 1s assumed that the coefficients of the equation
system vary little in time, and 1f the "frozen"-coefflclent
method is used, thls method makes 1t possible to apply the d4di-~
rect Laplace transform to the equatlion system and to reduce the
gystem of differentlal equatlons to algebralc equatians, with
‘the result that easily inspected statlonary structural dlagrams
of the vehicle can be constructed and the dynamlcs of thelr mo-
tion analyzed for individual channels on the basls of the
transfer functions tabulated in the present book.

v
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However, reciprocal effects between channels are observed
as a result of the "ecrossflow" effect at large angles of attack
for cruciform-wing aerospace wvehicles, which are symmetrical
about the longitudinal axls. The effect on the dynamilics of the
vehicle's "motion in three dimensions is taken into acecunt by
ocne of the varicus possible methods.

Se that the characteristics of the stationary objJect can be
obtained for varlous inputs, the book presents a compact mathe-
matical description of the standard responses that can be used
for conversion back to the transfer-function ccefficlents.

Along with stationary objects, nonstatiocnary objects with
variable paramefers are also treated in matrixz form, and the
conditions under which this representation is necessary are
stated.

Chapters III, IV, and V, Sec. 4 of Chapter II, and Appendix
IV were writen by A.S. Shatalov and Chapters I and II and Ap-
pendixes I, ITI and IIT by Yu. I. Topcheyev and V.S. Kondrat'yev.

All comments and suggestions regarding the book should be

sent to "Mashinostroeniye" Press at Moscow, B-66, 1-y Basman-
nyy Per., 4. 3.
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CHAPTER I ' 1 ”‘ﬂ i

TYPES OF AEROSPACE VEHICLES AND THE CONFIGURATIONS
' OF THEIR CONTROLS

1 1 AEROSPACE VEHICLE CLASSIFICATION PRINCIPLES
Aerospace vehicles of various classes now have great fllght

altltude and speed ranges. The shaded arxea in Fig. 1.1 indicates
s the fllghtperformance zone of

3%;9- ‘aerospace vehicles. in terms of al-
E§§ titudes and speeds .(Mach numbers)
100 — N The lower boundary of the zone is
characterized by the temperature
7 { strength characteristics of both the
- CmmmnmnMy - 3. ~vehicle itself and its engines. The
o -t I N : upper boundary is determined by the
T qg@\ N : controllability and fllghtstablllty
P S 21 -~ ~potential of the vehicle [30, 311].
& Sgength
/7 i lirnitﬁ__,(__
. All aerospace wehicles can be
v A classified into three groups on
- Figure 1.1. Maximum Alti- the basis of flight speeds and al-
tude and Speed Perfor- titudes: conventional vehicles,
mance Limits of Aerospace hypersonic vehiecles, and vehicles
Vehicles. k) Alrplanes; : that fly on cirecular or ballistic
2) hypersonic aerospace trajectories.

vehicles (ASV):; 3) rocket

boosters and space vehl-

cles of various types. At the same time, they can
also be eclassified on the basls of
the type of controls used. Here

again there are three quite distinct groups: aerospace vehicles

with aerodynamic controls, vehicles with gasdynamic controls,

and vehicles with combination controls (combinations of aerody-

namic and gasdynamic controls).

Alrplanes and antiaircraft, alr-to-air, and air-to-surface
missiles are usually clasified in the flrst group.

The second group (vehicles with combination controls) usual-
1y includes hypersonic airplanes, the last stages of antiaircraft
missiles, rocket airplanes, and many other vehicle types. Their
alt%tude 1imits range from 30 to 50 km and sometimes even higher
[30 :

7



Aidrplanes and rockets
with aerodynamic
comirols

Hypemonic airplanes and
rockats with combination
‘contmls

r Rockets with gasdynamic
controls

Aerospace vehicles

" Ballistic missiles and
booster rockets with gasdy-
namfc contmqls

Orbiting spacecraft with
combination controls

E Orbiting spacecraft with A
. gesdynamic controls

4

Flgure 1.2. Unified Aerospace-Vehicle
Classification.Scheme.

Hypersonic alrplanes and leng-range winged rockets, rocket
boosters, and their last stages can usually beclagsified as
aerospace vehlcles of the third group. The lower boundary for

this group of ASV's 1s approximately 50-80 km. There 1s no
upper limit [30].

We should note that the ahove classification of aerospace
vehicles is not quite definitive. Certaln forelgn antitank
devlices fly at low helghts and use gasdynamie controls. Short-
range ballistic missiles may alsc have gasdynamic controls only.
Orblting near-earth space wvehlcles of the rocket-airplane type
have aerodynamic and gasdynamlc controls, etec.

The two aerospace-vehicle classifications that we have con-



sidered can be combined into a single system. This unified
classification makes it possible to infer the purpose of the
ASV, and the principle embodied in its mode of flight and in
the control of the vehicle proper.

Figure 1.2 presents a unified ASV classification scheme.
In this classification, each aerospace vehlcle falls into one
of six classes: alrplanes and rockets with aerodynamic con-
trols; hypersonic airplanes and rockets with combined controls;
rockets with gasdynamic controls; ballistic missiles and rock-
et boosters with gasdynamic controls; orbiting space vehicles
with combination controls; orbiting space vehicles with gas-
dynamic controls.¥* We shall use this classification in Chap-
ters I and II. ' '

1.2. AIRPLANES AND ROCKETS WITH VARIQUS SCHEMES FOR DEVELOPING

i

LIFT AND CONTROL MOMENTS S :

Airplanes-and rockets with aerodynamic controls also in-
¢lude vehicles in which the forces required to develop the con-
trolling moments are created by control surfaces. Alrplanes
and rockets of this group can be classified into several sub-
groups depending on the positions of the wings and the con-
frol surfaces. If the wing is placed toward the bottom of
the fuselage, we have a low-wing configuration; if the wing
is at mid-height, we have a mid-wing vehicle, and, finally,
if the wing is at the top of the fuselage, we hawe a high-
wing type. The wing may be fixed or hinged, as indicated in
Fig. 1.3, a,b, and c¢. In the last case, we say that the air-

[ain

plane has a variable-geometry wing. . P
. - I

. - ':b)“ g |

Figure 1.3. Aerodynamic Conflgurations of Airplaneé. a)

With control surfaces in "Canard" configuration; b) with nor-
mal control-surface placement; c¢) with variable-geometry
wing. - C ' -

i
o )
Ly
Ls )

¥The last two classes are not considered here, since a separate
book will be devoted to them.

/11



The relative positions of the wings and horizontal tail
surfaces have a strong influence on the layout of an airplane. i
When the tail surfaces are placed ahead of the wings, it 1is
said that the airplane has a "canard" aerodynamic layout (see
Flg. 1.3a). At positive angles of attack o, the alrplane is
balanced by deflection of the elevators through a positive an-
gie, i1.e, when

(i)ba]> 0. (l .lf).

If the control surfaces are aft of the wings, the alrplane is

sald to have the normal configuration (Fig. 1.3b). In this scheme,
the elevators must be deflected through a negative angle to obtaln
a positive angle of attack, i.e.,

(gihmfio' (1.2)

If the elevators are placed near the tralling edge of the wing,
the airplane is said to be laid out in a "tailess" configuration.
The balance relation (1.2) is obviously retained in this case.
The vertical tailplane is at the rear of the fuselage in all
configurations. The allerons of alrplanes are situated on the
trailing or lateral edges of its wings and develop rolling mo-
ments or assist in countering them.

An airplane is made to c¢limb or descend by changlng the
elevator deflection angle Ge and, consequently, the amount of
1lif¢.

A rotor deflection Gr results in a flat turn. Aerospace

vehicles having the alrplane configuration with two-dimensional
wing arrangement can execute coordinated turns by simultaneous /12
deflections of the allerons (8,) and elevators (5,).

The 1lift Y of an airplane with two-dimensional wing ar-
rangement can be varied by varying the fuselage angle of attack
o, LIft is increased simultaneously by a component of the en-
gine's thrust T, 1i.e.,

Y=Psin (a‘]"(Pe)' (1-3)

where ¢e is the engine setting angle on the airplane.

We should note that the sum of the two angles o + ¢, < 20°.

This indicates a small increase in the 1ift of the airplane due /13
to the normal component of engine thrust.



Figure 1.4. Configurations of Rockets with Aerody-
namic Controls and Variocus Types of Wings. a)

With two-dimensional wing; b, d) with three-dimen-
sional wing arrangement; c¢) with annular wing..

Aerodynamically controlled rockets have a wider range of pos-
" sible configurations than airplanes, since they make use of vari-
ous wing forms. (airplane configuration) and three-dimensional wing
arrangements (cruciform wings). Diagrams of possible aerodynamic
configurations for rockets with various types of wings are shown
in Pig. 1.4. : o '

Rocket configurations are also classified as normal, "canard,"
and "tailless" depending on the relative positions of the ‘control
surfaces and wings along the body of the rocket. The rocket con-
figurations shown in Flg. 1.4 are normal in regard to the placement
of the control surfaces and wings.

The relative positions of the control surfaces and wings along
the body of a rocket strongly influence its configuration. Several /1
variations are possible here. Figure 1.5 illustrates the placement o
of control surfaces and wings at a 45° angle to the axis (the so-
called X-X configuration). In Fig. 1.5b, the wings have the X con-
figuration and the control surfaces the + configuration; this
scheme is usually designated as X-+. Two other schemes are also



Figure 1.5. Diagrams Showing Re~
lative Positions of Control
Surfaces and Wings on Cross Sec-
tions Through Bodies of Rockets.
a) Scheme X-X; b) scheme +X; c)
scheme ++; d) scheme X+.

concelvable: +-+ (Fig. 1.5¢)
and +-X (Fig. 1.5b).

Rollerons or spoilers
can be used on rockets to
stabilize them with respect
to the Oxl axis. A rolleron

is a heavy rotor that twists
the slipstream at speeds up
to several thousand revolu-
tions per minute. Figure
1.6a shows rollerons at the
wingtips of ° a rocket. As
the rocket rolls at angular
velooity w , a gyroscopic

moment appears and causes
the ailerons (see Fig. l1l.6a)
to deflect. The rolling mo-
tion of the rocket is coun-
tered by this moment. With
increasing flight speed of
the rocket, the angular
velocity of the rotors also
inereases, and, accordingly,
so do the allerom deflec-

tions. Figure 1.6 shows spoilers arranged perpendicular to the
flow along the trailing edge of a wing. Spoilers require small
control moments, and this is an advantage of this system, although
excessive drag is created when they are extended into the stream
at a 90° angle. They can therefore be used on rockets designed

for flight at high altitudes.

Figure 1.6. Diagrams Shewing
Arrangement of Rollerons and
Spoilers on Rocket Wings. a)
For Rollerons; 1) wing; 2)
elavon; 3) elevon axis; 4)
rotor; b) for spoilers: 1)
wing; 2) spoillers.

Figure 1.7. General Appearance
of Rocket with Pivoting Wings.

One wvarilety of the
"canard" configuration is the
pivoting-wing vehicle. It
acguires 1ts 1ift by plvoting



the wing, and its body is set practically in line with the free
stream, In this configuratlion, the wings are located at the
center of gravity and also act as control devices, while the non-
moving rear surfaces serve as the vehicle's stabllizer (Fig. 1.7).
The rocket can also be rolled if differentlal control 1s provided
for the wings. - .

Let us write the balance conditlon for the rockét in the form
Maa 4 Mi=0, (1.4)

where'Mg 1s the static derilvative of the rocket's moment with res-

pect to the angle a and Mg 1s the static derivative of the rocket's

moment with respect to the angle §. We find from (1.1)

3
(%)im:_:’:;‘ (1.5)

When Mg is negative, the sign of (a/s)bal is the same as that of
the derivative'Mg. This indlcates that when the wing is deflected

through +§, the body of the wvehicle also assumes a positive angle
of attack a.

We should note that the sign of Mg depends on the trim of the

rocket and the dimenslons of the stabilizers. Figure 1.7 indicates
the wing 1ift ng_(applied at the wing aerodynamic center ng) /16

and the stabilizer 1ift Yst due to wing downwash (applied at the
stabilizer aerodynamilc center Fst).' The resultant 1ift Y as-

soclated with the wing deflection angle 1s applled at the aero-
dynamlc center F, of the rocket (see Fig. 1.7). If the center

of mass 1is located at the same polnt, we have

x,.—.}:F°=0_ (1.6)

8 _ -
Here Mz = 0 and (a/G)bal = 0.

In this case, the angle of attack of the rocket body 1s zero at
all control-surface deflection angles §.

If the center of mass is shifted to a point Y, forward of the
aerodynamic center FO, 1.e.,



x?'"—xf"o<0| .7 (1'7)

we have Mg < 0 and (u/ﬁ)bal < 0, and the angle of atﬁack of the

rocket body is set at a small negative value. On displacement of
the center of mass to Y2 aft of center, we have

(1.8)

xr"'—'xf“ >:O

5 .
and M_ > 0, so that (a/é)bal > 0.

In this case, the body willl have a small posltive angle of attack.

We see from the above that a rocket with a pivoting-wing
configuration responds quickly, since its 1ifg changes immediately
with the pivot angle §. The small-rocket body angles of attack _
of this configuration ensure good operating conditions for ramjet
engines, preventing flow detachment at the diffuser.

Flgure 1.8. Lift-Developing Schemes for

- Rockets with Various Configurations. a)
With Two-dimensional wing; b) with cruci-
form wings; c¢) with pivoting wings.

Let us compare three schemes for the development of 1ift for
rockets having the same given wing area. - The first rocket, a.
flat-winged type, has a 1ift ¥ (Fig. 1.8a); the second, with .
fixed cruciform wings, will also create the resultant 1ift Y 1¢

each wing has a 1ift equal to —V’,’? (Fig. 1.8b); the third,
pivoting-wing configuration (Fig. 1.8c) has a resultant 1ift Y?@r.
Thus, the 1lift of pivoting wings in the plane of the bisector is /17
1.41 times the 1ift in the planes of fixed wings.

Fixed cruciform wings provide for turning the rocket without
roll, thus improving its speed of response. For this reason, the



three-dimensional wing arrangements are usually used in pilloteless
vehicles of the alr-to-air and surface-to-alr classes, which are
designed for use against aerial targets, where fast response 1s
necessary [28], Pivoting wings in a three-dimensional arrangement
are used in ramjet-engined air-to-surface vehicles, since thils
eliminates flow detachment at the diffuser, an effect assoclated
with large angles of attack [28].

The demand for Increasedaltitude capability in alreraft has
led to the development of vehicles of a new type: hypersonlic air-
planes with combination controls.

[
-

|
gl

Figure .1.9. Diagrams of Rockets with

Gasdynamic Lift-Generating Devices and
Gasdynamic Controls. a) With fixed noz-
zles at center of gravity; b) with mov-

| % altitudes [30] and also
a).ﬂl _ ig. b)TEj ® the substantial decrease
made 1t necessary to use

ing nozzles at center of gravity. Pivoting engines and

Q _ - ~ Hypersonic alr-
b v7‘ : ‘ " planes fly at high
- A= i
4{55;——- ] é%" use Flxed wings to gen-
' A i erate 1lift. However,
in the effectiveness of
aerodynamic controls has
gasdynamlic controls on
. hypersonic airplanes.
pivoting nozzles are used
in this case [10].

Let us now consider several different schemes for gasdynamic
control of the last stages of rockets (Fig. 1.9). Let us place /18
two nozzles at the rocket's center of mass (see Fig. 1.9a). These
nozzles have a control system that directs the stream of gas
into the required nozzle. This develops a reaction force that re-
sults 1n application of an additional g-force to the rocket stage.
Pivoting nozzles have been used as devices developing controlling
moments on rockets,

. - Figure 1.9b presents a
3 , diagram of a rocket with lat-
f§!1 :: / —\\\\\\( eral pivoting nozzles that are
"% A 4,P\ _ used to develop secondary g-
R = }-—-@—? forces. As in the first

2 g < |/.. - . scheme, the control moments
1/‘ are produced by nozzles mount-

ed at the end of the beody.

Figure 1.10. Diagrams of Rockets

with Gasdynamic Controls. - The last stages of surface-

to-air and air-tc—air rockets
designed for effectiveness. at
high altitudes are provided with
gasdynamic control devices. Here the controlling forces are created
not by turning the body of the rocket, but by means of jet nozzles:
[28]. ‘
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i

Figure 1.11. Diagram of Three-
Stage Rocket Booster for Space
Vehicle. 1) Third stage of
rocket; 2) third-stage stabil-
lzing engines; 3) sustainer en-
gine; 4) second stage of rocket ;
5) second~-stage stabilizing en-
gines; 6) sustainer engines; 7)
first stage of rocket; 8) first-
stage sustainer englnes; 9) non-
moving stabilizer; 10) aerody-
namic control surfaces,

Surface-to-surface missiles can also be made with two stages.
The first stage consists of several groups of launch boosters 3,
with deflector rings 1 mounted on nozgles 2 (Fig. 1.10). Rota- /2
tion of the deflector through an angle & deflects the launch-

booster engine Jet. Nozzle extensions may also be used together
with the deflectors [29].

These devices give rise to lateral forces that act on the
)

10



vehicle, and a rolling moment is also generated when a differential
control system is used. It is obvious in this case that the gas-
dynamic controls will be used when the rocket is climbing slowly
during the beginning phase of its flight. At this time, the aero-
dynamic controls are not effective enough to produce the required
flight trajectory or to counter roll disturbances. For this rea-
son, gasdynamic control devices are also used here (in the form
of deflectors, extensions, or pivoting nozzles).

Booster rockets are single-use multistage vehicles. Figure 1.11
diagrams the layout of a 3-stage spacecraft booster rocket. The
first stage 7 has a stabilizer 9 with aerodynamie control surfaces
10 and pivoting engine chambers 8. We see from this that the first
stage has combined controls — aerodynamic and gasdynamic. The
second stage 4 1s fitted only with pivoting engine chambers 6.
Finally, the third stage 1 is provided with a single pivoting cham- -
ber 3. The plvoting chambers are used to create lateral forces
that guide the stages of the rocket onto the desired ballistic
trajectories. Stabilizing engines — 5 for the second stage and 2
for the third stage — are used to counter rolling moments. Engines
83 which have a differential control system, are used to stabillize
“The rolling moment of the first stage at high altitudes. The aero-
dynamic control surfaces 10 are used at low altitudes [2].
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CHAPTER II : /2

EQUATIONS OF MOTION AND TRANSFER FUNCTIONS
OF AEROSPACE VEHICLES

In the design of control systems for aerospace vehicles,
the latter can be regarded, depending on their purpose and
gecometrical dimensions, as rigid or elastically deformable
structures. Most alrplanes and rockets (of the air-to-surface,
alr-to-alr, and surface-to-air types) are regarded as absolutely
rigid bodies, since their frames deform little in practice.
Booster rockets and strategic bombers are subject to considerable
structural deformation, and this strongly influences the design
of the stabilization systems and control loops for vehicles of
these classes. Nevertheless, even these vehicles are regarded as
rigid material structures during the first design stage. During
this stage, the layout chosen for the vehicle is evaluated, the
effectiveness of controls 1s investigated, and the stabilization
and control system takes form. The effects of vibration of the
wheole of the rocket and motions of its liquid fuel during stab-
ilization and control are taken into account in the following
design stage. Below we present the dynamic equations of the
vehicle and its transfer functions, which do not, as a rule, take
these factors into account. Consideration of elastic hull vibra-
tions is discussed in Chapter IV and in detail in the book [15].

2.1. FORMALIZATION CONDITIONS FOR VEHICLE EQUATIONS OF MOTION

As we know, a mathematical model of any aerospace vehicle can
be assembled to represent the real picture of the physical proces- /2
seés that take place during flight with varying degrees of accuracy.
The completeness of a model is rather hard to define, depending
primarily on the nature of the problem to be solved, the type of
vehicle, and the extent and reliability of our knowledge of the
Initial characteristics.

The type of problem to be solved determines the basic flight
regimes, analysls of which makes possible correct selection of the
reference system,

It will be recalled that inertial and noninertial reference
frames are distinguilshed in mechanics. Thus, the earth-based
coordinate system is a noninertial system, slnce it describes a
curvilinear motion in "immobile" space. However, it 1is possible in
certain problems of the dynamics of motion, e.g., for flight with-
in the atmosphere at velocities far below circular (Vc = 8.1 km/

sec), to neglect the earth's diurnal motion and curvature and to
assume that the center of the earth is fixed in space. In this
case, the earth-based coordinate system can be regarded as in-
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ertial., But the use of this coordinate system in study of the mo-
tion of space vehicles results in substantial calculatlng errors.
Thus, knowlng the type of aerospace vehlecle on the basis of 1ts
‘application we can simplify the notation of its equations of mo-
tion by taking the coordinate system into account.

Coordinate Systems

] ‘

) Let ‘us examine the coordinate systems that have been used most
wldely in determining the characteristics of aerospace vehicles as
objeets of control.

The earth-based coordin-~
!Yg ate system. The origin of

y 2 the earth-based coordinate
system i1s placed at the center
of mass of the ASV (Fig. 2.1).

The axis Oxg lles in the plane

parallel to the local horizon
and is directed along the
tangent to the meridian in

the direction of the North
Pole. The axls Oyg is direct-

ed upward along the local
vertical. Thls axls 1lles in
the plane of the axis Oxg and

1s so directed as to form a
right-hand (left-hand) coor-
dinate system. There are 2lso
other variants of the earth

: _ coordinate system, but they
Figure 2.1. Determination of Posi- differ from one ancother only

tion of Airplane (Rocket) in in the position of the origin
Earth-Based Coordinate Axes. 4 (moving or fixed on the :

earth's surface) and in the ./23
orientation of the Oxg axis

in the plane of the local
horizon.

Body coordinate system. This system (see Fig. 2.1) 1s used to
determine the posltion of an ASV with respect to an earth coordinate
system. Its origin is placed at the center of mass of the ASV. The
axes Oxi-and Oyl are placed In the vertical plane of symmetry of -

the vehicle and dlrected along its principal axes of inertia. Since
the directions of the princlpal axes of inertia differ little in
most cases from those of the vehicle's geometrical axes, 1t can be
agssumed that the axis Oxl is directed along the axis of the body

(or parallel to the wing chord),that the axis Oy, 1s perpendicular

13



to Oxl, and that Oz1 is perpendicular to the ASV's plane of sym-
metry and polnts 1in the direction of the starboard wing.

Written in £his coordinate system, the eQuations of motion of
the ASV are simplified in certain respects as result of elimination
of terms containing centrifugal moments.

The position of the body system relative to the earth system l:
is determined by three angles: the angle of pltch 3, angle of yaw
Y, and the angle of roll vy (see Fig. 2.1). The angle of pitch ¢
1s the angle between the axis Oxl and the local horizontal plane. .

The angle of roll y 1s the angle between the axis Oyl and the;

vertical plane passing through the axis Ox The angle of yaw ¢ ..

1
1s the angle between the earth axis Oxg and the projection of the

axisOx1 onto the local horizontal plane,

The relation between the angles of piltech, roll, and yaw on the
one hand and the projections @1, @y ®2 of the angular-velocity
vector w onto the axes of the body coordinate system on the other
are found by successive rotations of the body axes with respect
to the earth axes and is given by the formulas . -

wr,=y-+{sin 9
mh:@:cos{}cosv—!—f}sin % (2.1)
w;,=bcosy —dcos Hsin vy,

or, with respect to 9,1y, ¢

bemy, sin v, cos v

Y=w,, —tgHw, cos y— o, sin y); (2.2)

$=sec § (wy, cO5 ¥ 0, 5in y).

Semiattached body coordinate system. In this coordinate 5ys-—
tem, the Ox axis 1s directed along the projection of the flight-
speed vector onto the plane of symmetry of the aircraft, the Oy
axis along the perpendicular to the Ox axis in the aircraft's
plane of symmetry, and the Oz axls along the span of the star-

board wing, i.e., it coincides with Ozlz -Aerodynamic forces and

moments are usually measured in the semiattached body coordinate
system 1n wind-tunnel studies. This is dictated by the design
features of aerodynamic balances.

A vehicle is oriented with respect to the free-steam veloc-
ity vector by two angles: o and B (see Fig. 2.2a). The angle of
attack is the angle between the projection of the velocity vector
onto the vertical plane of symmetry of the vehicle and the body /=
axiS'Oxl, and the angle of slip B is the angle between the veloe- .

14



ity vector and the ASV's vertical plane of symmetry.

Drag and wind coordinate systems. In studying the motion
of a vehicle's center of gravity, it is convenient to use a moving
. coordinate system in which the Ox axis is directed along the veloc-
~1ty vector V of the vehicle's center of mass with respect to the
alr; 1f the Oy axis 1s then directed along the perpendicular to the
Ox axis, which lles in the local vertical plane containing the
vector V, and the 0z axls 1s directed perpendicular to the plane
X0y, the result 1s a drag coordinate system, whose position with
respect to the earth system i1s determined by two angles: 1) the
angle'r,pV between the projection of the velocity vector V onto the

local horizontal plane and thé axis Oxg, and 2) the angle § bet-

ween ‘the velocity vector V and the local horizontal plane. The
angle ©® 1s usually called the slope or flightpath angle, and the
angle ¥ the heading angle of the trajectory. If the axis Oy is
placed in the ASV's vertical plane of symmetry perpendlcular to
Ox, and 0z 1s perpendicular to the plane xOy, the result is the
wind ‘coordinate system, whose positlon relative to the drag sys-
tem -1s determined only by the angle Yy When Yy ° 0, the two

coordin&te systéms.coincide; Let us write the klnematic rela-
tionships deseribing the variation of the angular coordinates
¥, 8, and Yo : '

For the wind coordinate system
@y ==Yy sin 0;
wy=WycosBcosy, --Bsiny,; . (2.3)
wy= — W, cos 8 sin y,+3§ cosy,

- For the drag coordinate system-

w,=Wysin 6;
oy="Wycos 6; (2.1)
‘ w, =0,

where ©x Op ©: are the projectibns of the angular-velocity vector
of the rotation of the drag (wind) coordinate system with respect
to the -earth onto the drag (wind) axes. -

2.2. GENERAL EQUATIONS OF MOTION OF AEROSPACE VEHICLES

As we noted above, the earth's superficial rectangular coor-
dinate system can be regarded as 1lnertlal for vehieles designed
for flight wlthin the atmosphere at velocitles substantially
lower than circular. The motion of a "rigid" ASV in an arbitrari-
1y choosen moving rectangular coordinate system with its origin at
the center of lnertia 1s described by a system of six scalar dif-
ferentlal equations, three of which reflect the condition of force

15
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equilibrium in the projections onto the coordinate axes, while
three reflect equilibrium of the moments about these coordinate

axes [10, 201]. ‘

Airplanes and Rockets with Aerodynamic and Combined Systems for
Development of Controlling and Stabilizing Forces

The three force equations and the three moment equations take
the form

m(VetVioy~Vyo)=Fs

m (Vﬂ AV 0, — Vz“’x)‘_--Fy;

m (Vz"l"vy"’x_v.rmy)—":}"z;

I g (Fy= T ) 00, =] 1y (0,0, ) —
—J (0t o) Jy (2— ) =My | (2.5)

jy".’y"}"(Jx_’Jz) w0, =T (0, — ';,J -
—J (0t 0mg) + S (02 ~ 0t =M,;

S A (Ly—=J Yooy I g (g, — 0,y
= Ly (g 0,0,) 4 gy (0 — 02) = M,

where V,,V,, V, are the projections of the velocity vector of the
ASV's center of inertia onto the axes of the chosen coordinate
system, w, w, w, are the projections of the angular-velocity vector

of this system relative to the fixed system onto the axes of the
chosen coordinate system, Fy, F,, F,are the projections of the re- /2

sultant of all external forces acting on the vehicle, My, My, M,

are the moments of all external forces about the corresponding
axes, and J,, Jy, J, T Jer Sy are the axial and centrifugal moments

of inertia of the vehicle. Let us examine the composition of the
external forces and moments acting on the ASV and the basic pre-
lationships used in aercdynamics to describe them.

) The resultant external-force vector can be written (Pig. 2.2
a .

F=PLF,+G+F.,+F, (2.6)
where P 1s the thrust of the engine, Fa 1s the vector of the aero-

dynamie fdree»that ariseé as the vehiéle moves relative to the
-air, G is the force of gravity, Fc are the controlling forces

created by the controls (deflection of control surfaces, change
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Figure 2.2. Nomenclature of Angles of Attack,

Siip, and Roll.

missile,
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Figure 2.3. Clmracteristics of Air=
plane Englnes. a) Altitude-Speed
Curves of turbojet engine with after-
burner in terms of thrust ratio (P

- 1
is the thrust at altitude H and P

the thrust at H = 0); b) spec&fic
fuel consumption curves ofi"fully
thrust-augmented turbojet engine.

M-

0

a) For airplane; b) ballistic

in direction of thrust
vector, etc.), and Fd are

the disturbing forces due

to wind, blast-wave, or
other action [12]. Resolv-
ing the vector F into¢ecom-
ponents along the coordin-
ate axes, we obtain

) o= P,:; ‘I"X+ G.rr“‘}“Fc.-*’ + Eg‘;";
Fy=Py+¥-L Gy"'i“c?gy +E§y;
Fo=P,+Z+0,+F,+Fq.

| 2.7y

The basic characteristics
of a powerplant are Aits
thrust and specific fuel .
consumption, The thrust
function P = f£(V, H) for
a fixed engine setting is
called the altitude-

speed characteristic and
1s usually stated graphic-
ally (Fig. 2.3a) [10, 28].

The fuel-consumption curve for a given engine is similar in shape
‘to the thrust curve and determines the time variation of the mass
and moments of inertia of the vehicle (see Fig. 2.3b) [10, 28].

The directlon of the thrust force i1s stated in the body coordinate

system. As we know from our course in aircraft aerodynamics [19], /29
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it 1s customary to express the force Fa in terms of the dimen-

slonlegs coefficlent cR:

SV
FO:CH L2 + (2.8)

where p 1s the mass density of the air, V is the flight speed,
and S is a characteristic with the dimensions of area. When the
aerodynamle force Fa 1s projected onto the axes of a system bound

to the vehicle, the forces usually distinguished are the frontal
drag X, the 11ft Y, and the lateral force Z; they are expressed

in terms of the respective dimensionless coefficients Cys cy, and
e
Z

Spl2 SoV2 Sov2
X=c.t'-£2'“";‘ }"=C‘y-—%——; Z:C, ,‘2 . (2.9)

As a rule, these forces are stated in the semiattached body coor-
dinate system. The dimensionless coefficients are, in general,
complicated functlons of both the geometry of the vehicle and the
kinematic parameters of its motion. Their expresslions are usual-
ly limlted with accuracy sufficlent for practice to the linear
terms of the Taylor-series expansions

ay=ey, (M)+cs (M)a-t et (M)ad . . .y
ea==c, (M)4-clp4-ctat . . ., (2.20)/3

where M 1s the Mach number.
The frontal drag coefficient 1is presénted in the form
Ce=Ce(M)+A(M)c24-c, (H). (2.11)

The dimensionless coefficlents c'3, ot appear in the expressions
for the aerodynamiec control forces Fcy and Fcz‘ Controlling

forces from the powerplant are created either by changing engine
setting or by changing the direction of the thrust vector (see
Chapter I). In studying the moments on the ASV, 1t is more con-
venlent to use the body coordinate system. We shall therefore
consider all moments with respect to these axes from now on. The
princlpal moment of the forces can be written

M=M,+ Myt M- M,, (2.12)

where Ma is the static aerodynamic moment, whilch depends on the
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position of the Ox axis, with respect to the velocity vector
{(angles a, B), Mdp is the aerodynamic damping moment, which

depends on the angular velocity of rotation of the vehicle
{0, gy 3, T, B) MC is the controlling moment develcoped by the con-
trols (éa, Sr, 6e,...), and Md is the disturbing moment due to
thrust eccentricity, asymmetry of the tailplane, and the effects
of wind-and other facétcrs not:taken into account in the preced--
ing ‘terms in eqguatlon system (2.5). Im addition, all of-the -
above moments depend on flight regime (H; V). Projecting the -
princlpal moment M onto the body coordinate axes, we obtaln

MX,.My;ﬂand'MZA In aerodynamics, moments, llke the aerodynamic .

forces, are written in terms of -dimensionless moment - ¢oefficlents:

15qV2 {SovV2 bSpV2
N:M,=m, "%"_; My=m, 02 i M,=m, g - (2.13)
where 1 1s the half-span of the wing and b is its aerodynamic 31

chord. .In.the general case, expressions for the dimenslonless
moment coefficlents are usually terminated after the second-order,
Taylor-gseries terms. As a rule, only linear térms of the! expan-
sion are taken into account for ASV.with airplane, configurations.
For vehicles with small-aspect-ratioc wings, and especially for.
"canards," the rolling-moment coefficient m, is strongly influenced
by asymmetry cf the flow at nonzero angles of slipj consequently,
it is often necessary to include terms with second derivatives.

Confining the Taylor-ééries expansion to linear terms, we
can write the coefficients My » my, and mé in the following forms:
e 50 200,
CmEBd .
m,=m$ﬂéy;{—‘r}1Ewa—[—.}n;éaé;|—mﬁi’ﬁ—,—f-‘- o
Cmpt . - (238

my=mra+mi a4 mire A-mai . L L
The.quantities m®, myr, etc, are the partial derivatives of the
aerodynamic-moment .coefficients m,, my; and mz,withyrespect:to-‘
the parameter indicated by)the'superscript and are, 1n turn,

functicns of Mach number.. Using relations (2.5)-(2.13), we
write the dynamic equations. of motion for airplanes. and rockets:
wilth respect to their axes 1in the form '’ T L -

o g
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m (Vz+ Vo, —Vyw,) =

SpV?2
+C g +m x+Fc.r+Fd.c

m(Vy+V o,—V

m(V,+Vy,—V,0)=P,+c,

+ z+F.dz;
.r“’.r+(-] —Jy)oym

2
—m, ISQV

1SgV2
=iy Qz +Mey+May
szz+( ""j (0 U)y—l—sz(mym -—-(DJ.)—-
"‘jz:r(“’y'}"" ‘”y)‘i’fxy(“’f,““’i)z
£SgV?
=m, Q +Me s+ Mas

This equatlion system wlll be linearized later

$05) =Py~
+ey SQV ——tmgy+Foy+ Fapi

+-;xy (0,0
—~J g2 (0, —I-wxwy)+1yz(“’§‘-“’f,)=

+Mc x+de'
Jy"-’y_i'(‘!x"'*"z w‘m‘,—l—f”‘ mx‘”ﬂ'—mz’)"’

— J.ry (";x - mzm#) + j.rz (mi —mg)"—':

Prt

SQ V2 ]

+mg,+

__J,”)__

(2.15)

and brought to a

form convenlent for determination of transfer functlions for alr-

planes and rockets.

The expressions considered above for the aerodynamic forces
and meoments acting on ASV's are conventional and are widely used
In practical calculaticons to determine the characteristics of the

vehlicles as controlled obJects.

dimensionless coefficients {(2.10),

izing the equations of motlon (2.

The expresslions given for the
(2.14)] are used in linear-
15) and can, if 1t is necessary

to obtaln high accuracy in the solution, be supplemented by non-

linear terms cf the expansions.¥®

Supplemented by the kinematic relations

(see Sec. 2.1) and

by the laws of variation of the mass and moments of inertla, the
equations of motion (2.15) describe the motion of the vehicle in

three dimensions
equations.

and form 4&a system of nonlinear differentlal
As we know, 1t 1s generally not possible to find solu- /3

*It is assumed that the aerodynamic characteristics of many vehi-
cles are llnear over the entire in-flight ranges of the angles of
attack o and slip B and the anguler veloclties.
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tions for such equations in elementary functions or guadratures.
Subsequent work with the equations can therefore take at least
two directions.

1. Use of digital computers for analysis of the equation
systems. Computers can be used fer numerical integraticn of dif-
ferential equations of practically any complexity and with the
desired accuracy. In this case, an attempt is made to take ac-~
count of complicated nenlinear relationships in which the aero-
dynamic forces and moments depend on the parameters of the vehi-
cle's motlon, to introduce varilous refinements into the equation
system to-ilnterrelate the contrcl channels, etc. The result is a
unified Interrelated equation system that gives a rather complete
plcture of the vehicle's complex multidimensional moticn.

2. Simplification of the system of equations of motion of
the ASV for preliminary selection of the parameters of the autoc-
matlc devices used in the stabilization and contrcl systems. In
this case, the three-dimensional motion is resclved intc longl-
tudinal and lateral mctions of the center of mass and a motilon
about the center of mass. The vehicle's equations of motion are
linearized with allocation of the motion among the control chan-
nels, u

The first direction requires detailed study of the specific
vehicles and control systems for them. The results cobtalned can
be used for analysis or synthesis of the automatic system as a
whole. The second trend, on the other hand, brings cut the bas-
ic¢ propertles of the wvehicle itself as an object of automatic
control, and this is the purpose of the present book.

Liquid~Propellant Rockets and Reccket Boosters

A distinctive property of vehlcles of this type is the pres-
ence of substantial liguid masses on board. Movement of liquids
through pipelines and in the propellant tanks of the rocket re-
sults in the appearance of additional forces exerted on the body
of the rocket by the liquids. Most significant among these are
the Coriolis and inertia forces, which must be taken into account
in Egs. (2.5). The Coriolis forces are nmuch larger for rockets
of the present class than for alrplanes and wlnged rockets, since
the 1ift of large rockets 1s produced only by englne thrust, and
this requires high per-second fuel and oxidizer flowrates. The
Coriolis force and moment exerted on the body by the liquid
flowing in a jJ-th pipeline at velocity Vo relative to the bedy

can be found from the relations

‘ Ecj=-—52(0x‘vrdm; ng=j2f’><m}<‘0'dm| (2.16)
. ] 1y

where ¢ 1s the angular velocity of rotation of the rocket,.
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- The total Coriclis force and the corresponding moment are

N N
e = eh Me=Y M. (2.17)

Inertial forces arise as a result of the mobility of liquids
in propellant tanks. The free surfaces of the liquids are deflect-
ed from thelr undisturbed positions in the presence of accelera-
tions and angular velocltles that arise under the action of extern-
al forces and moments. In turn, the sloshing liguids give rise to
forces and moments that act on the body of the rocket.

Writing the equations of motion of a
body wilth cavities that are partly filled by
liquids 1s a complex task that has been
studied in a number of works [1, 17]. Let
us describe the basic premises and results of
solution of thls problem., The liquids are
regarded as ideal and incompressible, and
thelr motion as nonvortical, so that it can
be described with the aid of the velocity po-
tential. On the assumption that the deflec-
tions of the free surface fromits undisturbed
position are small, a partial differential
equation is written for this potential. In-
vestigation of this equation, together with
the system of ordinary differential equations
describing the motion of the rocket's body, involves major dif-
ficulties and can be completed only when the fuel tanks are posi-
tioned symmetrically and have simple shapes, e.g., those of the
cylinder or sphere. It is. possible in these cases to introduce /3
generalized coordinates that satisfy the ordinary differential
€quatlions, which is equivalent to replacement of a system with an
infinite number of degrees of freedom by a system with a finite
number. We might, for example, choose as these generalized coor-
dinates the angular inclination of the free liquid surface near
the line at which 1t intersects the plane of the undisturbed level
and the angular rotation of this line relative to the Oz axis.

(Fig. 2.4). It can be shown [1] that these coordinates (we shall
dencte them by q,, and pv) satisfy the equations

é"‘i"svév‘i_ 934.=(R.yVy+R,H {)—f—Rvﬂ&) CcOS p'+
+ RV, 4R, §) sin py - (2.18)
Pl om0, =Ry, ,
(here v is the number of the fuel tank).

Figure 2.4, Posic
tions of Ligquid
Surface in Rocket
Tank,

These equations are similar to the equations of pendulums
with natural frequenecy ﬂv and damping Ev and‘uv, respectively.

The right-hand side expresses the forces exerted on the liquid by
the solid body of the rocket. Theoretical calculation of the
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coefficlents R, Kw Ky and 2, 1s possible only in simple cases,

and the damping can be determined only by experiment. It is
usually very small, and this gives rise to substantial difficulties
in the design of automatic stabilization systems and makes 1t
necessary to introduce mechanical dampers, perforated partitions,
ete,, thus increasing design weight. Great Importance attaches
to‘thefnatural frequency, which is determined by the relation

Q= ViV et n ' (2.19)

where A 15 a certaln constanf and g,y is the projectlion of the
acceleration of gravity onto the same axis. This relation 1s
phyeically lucid, 3

A simple interpretation can also be found for the. expression
for the force exerted on the body by the noving 1iquid

N , : . L
=—YR,,q,cos p,. - S (2.20)
LN

3

We see that it 1s proportional to the generalized accelerations, /

and that the coefflcient ﬁvy plays the part of a mass assoclated "

with the coordinate qu.

"Similarly, we have for motlon in the yaw plane

N . ' :
F1p=—"2 Rugsin p, (22n

The component acting on the body along axis Ox 1s, as we should
expect, equal to zero: ‘

£l x= 0.

The expresslons for the moments take the form

N — a
My p=— 2 Rapw

{42—

Mpy=—~

8
{3

Ry ga§fﬂm']wnp“_

vl

«
]
-

bﬁz

R+ (V o—g, ZH‘W‘]COSP‘

vl

(2.22)

-
]
—

23



We note that only the fundamental vibration frequency is
taken into account in each tank in the above description of
liquid.sloshing. - Consideration of higher harmonics results in
only minor corrections because of the rapld decrease in the coef-

LY

ficients R}, R1D.. . .. with increasing harmonic number n. Let

us now turn to description of :the motion of the rocket's body
with consideration of the Coriolis FC and liguid FZ forces and

the corresponding moments My and M.

We write the equations of the forces and moments in the pro-~
Jections onto the body coordinate system on the basis of Flg.
2.2b and Egs. (2.5) with consideration of the symmetry of the
ballistic missile with respect to the Ox axis. We shall assume
that there is little change in the directions of the principal
axes of lnertia during flight. In writing the equations, we
assume that the directlions of the principal axes of 1nertia
colncide with the axes of the roeket and do not change during
fllght; the result is the system

Spv2

m(l;"‘“i‘vzmy—vywz):P:'l'c.r 2 +

+ng+Fc_x+ch+‘Fjdx+FZ:;
. N SuV?
m(Vy+V 0, —V0)=Py 46, =04

mgy+FeytFoy+Fav+Fia

. T 2
m(vz+vywx—vxm9)=Pz+cz SQ2V

+mg,t Foat FortFat+Fil s

. ISal2
‘,x“’x'l'{'fz_jﬂ)wym;::mx S;V‘ + 7
+Mpx+Mcx+Mcx+de+M(z X )
I18yV2 :

+

+Mpy+Mey+‘Mc#+Mdy+M_iﬂ;

. #SpV2 :
Jz‘“z'!"(‘]?“'!x]wxm#:mz ?2 +

+ Mpot M- Mgy May -+ Mj 3
Gvtengy + 2% =(R\,V, + R 5+
+R wd)cos p,+(R..V, +Ry; §)sin pu;
Potip,+ 22 pe=Ryy;

(2.23)

Jyéz,,(Jx-—J,)mzmx=m,

v=i,2, e e, N, )
where . Fc‘x=2m(vz‘“y"vy“’:)
Fcysz (me:"'vzwx)
Fczzgm(vywx" waﬂ)
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are the:Corioclis forces; MCX, MCy’ and MCz are the moments of these
forces,xPX, P and PZ are the total thrust forces from the rocket's

y’

engines; and M_ M__, and M are the total moments of the rocket's

pPxX* "py Pz
engine-thrust forces. We shall assume that the flow of the gases

and liquids within the body of the rocket i1s axlially symmetrical;

then the Coriolis force and its moment have the components

cx_o Fcﬂ—Fm F F:yzwy; }

Cy'
(2.24)
M o=0; Moy=M 0y Mo,=Mz0

ez <

The Coriolis moments have various effects on the rocket. If the
engines are aft of the center of mass, the damping moments are
largerlthan'the driving moments, i.e., ' S o

M2 Z0;
(2.25)

- Mgz <0.

We shall assume that the air in which the vehicle is flying has
a veloelty Va and also .consider N engines. Weé denote the projec-

tions of englne thiust onto the axes by Pixn Fu, Pin and the angles

beteen the thrust vectors and the y and z axes by ¢ and AJ .Then,

considering the smallness of the angle between 0x and the- engine-
thrust vectors, we can write :
szzpj;
i :

ﬂxgﬁw | | (2.26)

- P~ EPJM.
}

Denoting by x s yj, and zJ the corresponding distances. from

the point of applicatlon of vector P on the nozzle exit sectlon
to the center of mass of the rocket, we obtain®

My = 0 yflf *’-‘?m) Py
i

Mpy=2-(2._j—lej)Pj;r : . - ! - (2-27)
j .

My = 2 (xipr— yn) Py.
- . J
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Equation system (2.23) can be brought to the following form on the
basis of expressions (2.24-2.27): '

0

4 ¢ Sl
(b, -}-V,m‘,,--vp"’z)-"-'-E P."*""%"‘" (Ve—
j

—Va Pt mget FoxtFactFla
/ x ¢ )Sa
m(vy-" was—vlwx)=ZP}?l==(c i 25‘,) %
X (Ve=Vad(Vy=Va)) +migyt+ Flgout
+Fost+Fayt+Fla
)Se

. (5:04‘ ".E
m (V,+Vywx—way)=V Ppy +——2—X
| sl

X(V,— Va:)(V;—V‘az)'l'mg: "I"F:H;“’H'["
FFortFartFias

. Y
Sy (=) w0, =mx; QV’-I—

+;(ym—zr\o;)P;-}-M-‘-:,-f-Max_{-.Mf‘; + (2.28)

18pV2
5 T

+ 2z =)+ P Mk, +

+Magy +May+Mp 4

. &80 V?
Jz‘”z+('j#"-fx)°’x‘°y=mz S{; -+

+§ (rer— 91) Py + M3z 0,4
+M52+M€11+M*z 2
é,-{-s,q’, +934v=(Rv yv:f +Rv'§ §+R‘-98)COSP'+
"l'(Rqu +R'.'l“ ;P) sin P
E’v‘]‘“vﬁv"l‘gapv:;?%d)x-

J#‘;’F,+(Jx_ Je) Wi, == My

V=1,2, . . .,.‘V

LA

The resulting equation system (2.28) is then linearized, and the /4
linearized equations are used to determine the transfer functions
of the ballistlc missiles and rocket boosters.

2.3. LINEARIZATION AND BASIC METHODS OF SIMPLIFICATION OF AERO-
SPACE-VEHICLE EQUATIONS OF MOTION

The methodological aspect of linearization of the system of
differential equations describing the motion of an aerospace ve-~
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hiecle is i1lluminated quite fully in a number of works on flight
« dynamles [18, 21]. We recall-that the method for linearizatiocd
of the equations is essentially based on fhe assumption that the
parameters of the disturbed motion (V, e, B v, & ¥.. and their de-
rivatives) differ little from the parameters of the initial mo-
tion at the same time. Terms containing the deviations of the

- disturbed-motion parameters from the parameters of the initial
motion in powers higher than the first can then be neglected in
the equations of motion as small quantities of higher order. It
is more convenient to linearize the equations of ASV motion
after first dividing them into two independent systems, one "of
which describes the longitudinal motion and the other the later-
al motion. The :fundamental possibility of this separation re-~
sults from the symmetry of the. vehicle about the longltudinal
plane Oxlyl ‘ If. fllght takes place in a certain vertical plane

and the plane of symmetry of the vehicle- 001nc1des at all times
with the fiight plane {as is pessible, for example, with ideal
roll stabillzatlon) then the klnematic parameters §, Y, Ox, Oy

will at all times equal zero. In this case, the vehicle's mo-
tion will consist of a progressive motion of its center of
mass along the axes Ox and Oyl and a rotational motion around

‘the axis 0Oz 1 This is Known as the 1ongitudina1 motion, and is
characterized by the parameters L’U 0, acm,ﬁ x. Accordingly,

the lateral motion consists of progressive motion of the center
of mass along the axis Oxl'and rotational motions around the

axes Oxq and?Oyl. We should note at once that no matter how we

simplify the equations of the lateral motion, we shall never be
able to exclude from them such longitudinal parameters as V and
H. This means that to investigate the lateral motion independ-
ently, it 1is 'first necessary to determine the manner in which
these parameters vary as time functions, i.e., the differential
equations obtained for the lateral motion will be equatilons

with variable coefficlents. The possibility of resolving the
controlled motion of the ASV into longitudinal andlateral mo-
tions also hinges on the operating characteristics of the flight-
control system. If the deflecticon of the pitch controls depends
only on the longitudinal parameters, and the deflectlons of the
vaw and roll controls only on the lateral parameters, it is pos-
sible to break down the over-all motlon in this way. The result-
ing simplification of the equations of gulded moticn of the

ASV makes 1t possible to lower the order of the eguation system
by half and is used extensively. in analysis of ASV flight. To.
determine the characteristics of. the 10ng1tud1nal motion, it is ..
more convenient to write the equations of the forces actlng on
the ASV in the directions of the 0x and the Qy axes.in the wind .
coordiriate system and the equatlon of mements .in the body system.
In the wind system, y, =V, V,=V,;=0, w,=0/, and the equations of sys-

tem (2.5}, which describe the dyriamics of the-longitudlnal-motlon,
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assume the form

mV:F_,; &
mVi=F,; (2.29)
J =M,

Equation system (2.29) must be supplemented with the geometrical
relation between angles _

b=bta. (2.30)

The projections of the forces onto 0x aﬂd Oy are determined by the
expressions (provided that the direction of the thrust force coin-
cides with that of the wing chord)

F,=Rcosa— X —Gsinf8+4+Fq (2.31)
F,=Y 4 Psina—Gcosp4-Fgy, '

where P is the thrust of the engine, X is the frontal drag, Y 1s
the 1ift, and G is the weight of the vehicle. The manner in which
the mass and moments of inertia of the vehlc¢le vary is usually

known, and 1s determined in terms of the specific propellent-con- /4

sumption curwve and the depletlon-sequence program:
m (f)= -—Jd‘dt J ()= f(C, 1. (2.32)

Further simplification of equation system (2.29) 1s based on the
possibility of resolving the longitudinal dlsturbed motion 1nto two
different types of moetion: short-perlod and long-periocd. The phys-
ical factors responsible for this character of the disturbed motion
are the same for all ASV's, The vehlicle can change its angle of
attack very quickly by rotating about its center of mass. At the
same time, the flight speed of the vehicle varies comparatively
slowly. The period of the long-period oscillations 1s usually
several tens of seconds (30-100 see), while the period of the
short-period oscillations 1s a few seconds (1-4 sec). In consider-
ing the short-pericd motion, therefore, we may neglect the veloc~
ity deviation AV and assume that the velocity 1s a known function
of time. With this assumption, we may take, instead of the com-
plete system of differential equations of motion (2.29), only the .
second and third equations, which determine the response of the
vehicle to deflection of the controls and to dlsturbances that
offset the equilibrium of the moments and forces with respect to
the Oz and Oy axes, respectively. The characteristics of the
short-periocd motion are baslc to the preliminary mathematical
design of flight-control systems 1n the longitudinal plane, and
we shall devote most of our attention' to them below. For example,
it 1s necessary in a number of cases to consider the dynamics of
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speed and altitude varlation in investigating systems for flight
speed and altitude control. The first two eguations of system
(2.29) ) ‘

mV=F,,
mV&'sz‘ (2'33)

are usually consldered in these problems, supplementéd by the mo~
ment-equilibrium equation

MV, H, 0, 3)=0

(the dégenerafémthifd equation'éf system (2.29)) and by the kine-
matic relation : '

H;;— D}Asin 8. (2.34)

Physically, this means that when the controls are deflected, the
angle of attack assumes its balanced value instantaneously, with
the result that the condition M, = 0 is satisfled throughtut the

entire flight. Let us linearize equation system (2.29) separate-
1y for each form o6f ‘ASV motion. We shall conslider the short-.
period motion, the approximate equations of which are obtained by
dropping the first equation in system (2.29). In the remalining
equations, velocity and altitude are assumed to be known time
functions. In accordance with the .conventicnal procedure for
linearization of the equations, we assign small increments to the
parameters of the vehicle's motion, expand the aercdynamic forces
and moments in Taylor series in these increments, cut this expan-
sion off at the linear terms, exclude terms of the second order

of smallness from consideration, and replace the sines and cosines !
of -the angle of attack by the approximate expressions : .

sine==a, cosa==l, - - | '(2.-:35.)

As a result, we obtain the equatlons of -the shortéperiod motion
in the form ‘ ‘ : o .

mV A§ = Fzaa + Fja 4 Fledg

Ja¥m=Mopat MS ac4 Maab L Miedg (. - (2.36)
CAbo=pbAm, '
where ri, M3, . .. arerthe‘partialﬂdérivativeSjof‘the forces and -

momenfs with reSpeqt,td'the'paraméters indicated by the superior
indices. ' ‘ , ' o o o

Using the conventiohal notatlion of aerodynamiecs for the
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forces and moments (see Sec. 2.2), we can write the coefficients
cf the egquations in the form

3 V2 3}
S L p, Fs=Gsin by;

Fo=

2 L
tegp1/2 25SpV2
5.94_._. c&' SQV . n_mz e -
.Fg -——‘"—""2"—"-“ » Mz— 2 ]
- m‘;z 8280V - mE 528qV } (2. 37)
M“’z.—_-_—_z_...___.._.-_; L M
z ) z
M _ msevs.
z 9 !
where the coefficiénts myz.  and "ﬁ are brought to dimensionless
form with the relations
o a, b 4 —ma b
mzi’o':n‘f,zz .-V— and mz—'——-mz “"}--

Thus, we have arrived at a system of linear differential
eguations with varlable coefficients whose law of variation is
asigned as a function of time and determined by the flight trajec-
tory chosen for the ASV. Let us write equation system (2.37) in
the form . -

a-t2z0 — $42ph = — 23 8
. " : ’ '
ng “+n¢u_+a+nr€*=n‘5e8e’ (2.37 )
where PP F M;"— - M
Zy == — Zy=—;) o = My == — H
my V Iz Iz
Mo i M
= J.' za,"‘sz’ m_': I
Here and below, the sign of the increment A is omitted to abreviate
the notation. If level flight is taken as the initial motion, the
coefficient 2z will vanish. Substituting wz for % in the equa-
1
tions, we cobtain
Gt ze—on=— 2l } (2.38)
7; 04 na o, + 1,0, =14 B,
These equations are usually used to study the short-period com- /4

ponent of the motion when it is important to evaluate the frequency
and degree of damping of the oscillations. The coefficients of
equation system (2.38) for the F-101 aircraft are given in Ap-
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pendix 1 [27].

Consideration of the gravity component Z # 0 (for 6y # 0)
has 1ittle effect on the nature of the short-period oscillations
defined by Egs. (2.38), adding only an aperlodic component of the
motion with a large time constant. In the design of automatlce
pilots for longltudinal stabllization of ASV's, therefore, the
rule is to use eguatilon system (2.38) with the angle of pltch ¢
obtained by simple integration

I
{}$§ UJz| df. \

Let us consider the characteristics of the ASV's long-period mo-
tion. In the linearization of Egs. (2.29), which describe the
long-period motion, account 1s also taken of the dependence of
the aerodynamlc forces and moments on the velocity and altitude
Increments u and h:

AF y=Fia 4 FU8-1 FVu - Flih 4+ Fl b
AFy=Foa Fif- FVu-|- Fllh - F 4,4 F 13
M= MYu-t Mea - Mies,

where Gt is the throttle deflection angle.

Linearizing Eqs. (2.33) and (2.34), we obtain & system of
linear differentlal equations:

B=cpit 00+ CabF Cuh - ade !
b= cptt + €20+ Cof+ Cault Z Bt tha.t;
f.2= Cnu—-{— Cﬁsa;

3
O==c it b+ Cult+med,

(2.39)

where

PV SppV0 | e M
ey T =202 (e, 4 e 32,

~
=
[#

|

‘ SeVs, P
cum={ gt Eo )

C13= — g cos b

2 5
! w €xSVaag \. P .
Cpag==— | Pl ——— ==} gy=—=,
n= 2 OH £
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Seo'( Mg\ PMM, oo ST
Cog=—x 1| ¢ A CM—'-— . ’ '
H oM\ ‘-‘y 2)+ mv’g'ao»

o SV
_..n;._o_ﬂ_..l_

. & .
Cyp o c,s—-c,n—.sm Bs

‘ ;:!ystfo do P Ya P6
Cog == — by 2y =2y =t
BT Tom ol mvy U ST v AT g

ey =0y Cp=0; cu=V

(fmzu)M + @ (m:)M + (ﬂ?:}MBHO
- a

Cg=
Cog==1m3 € =0

VO and 60 are the values of the initial-motion parameters. Let

us elaborate on the method of evaluating certain coefficients,
e.g. : .

' IM; OMy, oM oMt
C41=7“§V—=M¥=“3{,_'+( ) o‘f“( ) Be;,

where

N,
oM; _Sevy
v g, | ™ +"“ (m2) J
oM hSogVe [

—_———— mis__[_,_‘/__ ma M
v P l. ‘" Za ( z) 1°

B_A_{i_i_s_g_”v_"’_[m v )M];

where a, is the balanced value of the angle of attack (in un-
disturbed motion), §.o 18 the balanced value of the control
deflection, and a is the velocity of sound. Summing, we obtaln

MY — bSeVs

: 7. [mz,,—l—mao—}-ma—{—
g e )

where the sum of the first three terms expresses the balance
condition. and equals zZero. We then determlne

ME== A
z 2, z 2,

m%hSoV2 M =m§bsgv2
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It can also be shown that the partial derivgpive' %%5_ equals zero.

thus, the static. moment-equilibrium equation“is;written

1 IR ‘ '
Py [(ma )Y (m3)¥ag -+ (m[) M3, J i+ miaf-mid =0,

Using the balance eqﬁation for the mdments; we elimlnate the varia-~
ble a from system (2.39). We then have - e

7ﬁ=dp+c@;wﬁM=Qm+m§5
— Cylt — 58+ A=0, '

where. s, -

- AR B R i Mo Bt
R £41€12 o c €10644 a ciafﬂ:"
11 ] = — F. = —
= e 16 =Cu T Gy ot
. ' g § ERF ¢ maﬂ_
st C eaolqy P C Loty - T 2,
PRy S i) WIRNY. WS, St el N A N
; roy ag. = -
n 2 : ¢4n ’ W . [.F T ! Fa %

L 42

Depending on flight regime, the coefficients of system (2.40)}
are either constants or functions of time. The differential equa-
tion system (2.40) investigated in problems of stabilization of
ASV altitude and speed has constant coefficients. For such flight /48
conditions as programmed climbing, acceleration, and deceleration,
we obtain an equation system with strongly variable coefficlients,
since the rates of change of the coefficients are comparable to
the rates of change of the:flight parameters. ‘

As we noted above, the lateral motien of the ASV consists of

a progressive motion of the center of mass along 0z and rotation-
al motions around the axes Ox and Oy. This motion is described
by the 3rd, 4th, and 5th equations of system (2.5). Let us write
these ‘equations in the body ccordinate system, which.is the most
convenient . in this case. We note beforehand that in virtue of -
the vehicle's symmetry about the "x0y plane, the  centrifugal mo-
ments‘Jﬁz?and‘J&i“are small and can be excluded from the analysis.

We have | |
VeV Vi) =Fai

Jyoy 4 (g T ) o i '
RS | C = dg g ey =My b (2.41)

J e, (=) wgieg, — e b

—J sy (10, — wx 02, )= Mz,:
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We supplement the system with the relations

V=V cosfcosa;

. Gy, CO8 ¥
V,=—VcosBsina: i
V=V sin p; Y=wr, —w,cosyig b,

—

Considering the actual ranges of variation of o and B, we
replace the expressions for Vx’ Vy, and VZ by thelr approximate

values

V,.==V; V= —alV; V, =53V,

From now on, the products of small quantitiles wx£; and w_ w_ can be

vz

neglected in accordance with the method of small perturbations
used in linearization of the equations. In a number of cases,
however, as in investigation of the influence of inertial cross
couplings on the lateral motion, these terms can be taken into
account by programming the variation Of(jx_nhy%”(jg_j“mnijwmh

as time functions. Having‘made the substitutlons indicated, we
reduce Egs. (2.41) to the form

mV(ﬁ-—am‘.-,‘—-mj.,)-_——-F,,;
-fy*"’m—‘Jxv":'xa"'—‘My:i

J g, — xgr::m-:M,,‘; (2.42)
--_wyi cos 1 .

Y= ey

cos d

V=, ~w,, cos ytg b, j

The projJection of the forces onto Oz is formed as follows:

SyVe
2

2
Fe=c, -}—c;@%—;—ﬁ—ccosﬁsin\a

where the first term is due to the presence of the angle of slip,

Che second to defilection of the controls, and the third to varia-

tion of the gravitational-force component. On the assumption that
the initial roll equals zero (YO = 0}, the linear lateral-force

lnerement 1is usually wriltten

Sol2 2
Fan=ct -——92 P+ pii@%’_’_ 8- C cos by,

As a rule, the moments are aslgned in the semiattached body coor-

dinate systen.

Then the projections of these moments in the later-

al motion onto the body axes are written
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Me =M+ M, sin o= M, -} My
My =M, —M,sina=M,—M,a.

Representing the deviations of the moments in. the form of expan-
sions in the increments of the variables B, wx oy 6, we obtain

1Sy 5 3
M, = 5 A(mi{ﬂ—{—mxasad%-mx')‘f‘

1254V Z, b

. 4‘  (mxrm;,—}—mxﬂmy‘);
1SV2

Myl.l- 2

-+

5 3,
(s m ot me)+

1250V 1 ;7 . :
_...2.;:’_ myym:m -+ mf,#-{—my'ru;," ,

+

EER

whefe_ﬁhé partial derivatives of the moment COfoicients'with

respect to the variables of the motion mi, ..

have been converted

to the'body coordinate system and are functions of thé Mach ‘num-
ber and the angle of attack o (the "half-span' I of the wing is

taken as the arm), while the derivatives mjx, mj¥, my¥, myx ‘are reé-

duced to dimensionless form according to

L PR I

X x?V' ¥ yi'f;, Etcn

Substituting the expressions for the forces
Egs.
ficlents, we write system (2.42) in the form

ﬁ=%"’x1 oy, — 2B+ zv+ zﬁ.‘.a_g;

* J ‘ », * M |
Wr = _J%L Wy + lﬁlﬁ - t'_tfﬁ-‘l + Z:w"’r + l;_'a‘,-'l— 15!5‘,

J .
y= S — i g o, — eyt

3 Bt O

h)yl

"P=

'-v-——wn—-m”ltg ﬂ,

b4
cos 8

where

——-CgSgV
Zp == ————}

z —icosﬁ" 2y =
¥ T v 0 gl

2m

(2.42) and introducing the new nomenclature

0:".SQV

and moments into
for the coef-

(2)43)

.
1
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. oy
P mi1SqV2 P i BSeV
B 24, ' £ 44, :
m"y 125V mtaSove
P x . =
r e 1 Th 2/, 7
d B
o m 1SV . e myISQV?-_
b 2, ' 7P 2,
m:x 128V — et
;J" ___!:‘ N n‘:-— bl —
¥ ey Uy :
3 ; 5o
. mISqVT RN G ik
% wy ! Sa 2, 4y

o, Yo are the programmed values of the parameters of the ve-
hicle's longitudinal motion.

To eonvert to the Cauchy notation of the equatlons, we

-f.r!f
¥

€quations of system (2.43) by substitution. As a result of the
linearization of system (2.41), we have

eliminate the terms %%Aml and ;. from the second and third

ﬁzao“’x[ +0Jy1 - zﬁ?+37Y+ Z'p_'ra’;
wxl_"'—".lﬁp_!-_tmxl+lr“’y1+‘{§,=a‘.,"}‘l&aaf'g; ( uu \
‘ 2.443

wyl TS e H.a‘,j — g P—!w ﬂyiox'] — n‘_myl —+— n‘,r.P’-"";_
+ g by

fﬂﬂl

— g
Y‘—“)xl_‘“’yl tg Y= .
cus g

The procedure for obtaining the coefficients of Egs. (2.44) is
obvious and requires no explanation.

determined by the nature of the vehilcle's motion in the longi-
tudinal plane. These equations are usually used to investigate
the stabillization of alrplane-configurated vehicles, since such
vechicles are characterized by strong reciprocal effects between
yawing (rotation around Oyl) and rolling (rotation around Oxl)

‘motions and, Strictly speaking, one motion cannot be separated
from the other),
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However, these reciprocal effects are small for axisymmetric
ASV's, and the' separation into yawing and rolling motions is le-
gitimate. In addition, a similar division is often used for air-
plane-configurated vehicles in preliminary studiles.of their charac-
teristics, with subsequent conversion back to the more complete
equations. : '

Bearing these remarks in mind, we proceed with further sim- /52
plification of the mathematical model of the ASV. We shall as-
sume initially that the angle of pitch ¢ and the angle of at-
tack o are small and that the centrifugal moment of inertia

ny = 0. Discarding the products of small quantlities, e.g.,
myl tan ¢, we arrive at the following equation system:
oy, — 2B+ Lyt 23
0y, == — 158 — 13 B o, — B0y, By T
s i “x (2.45)
0y =1pB— Lyory, + Loy, + Iy Byt B
Yzm.l;l"
"i':myl‘

As in the case of the longitudiral channel, the lateral mo-
tion can, with certain assumptions, also 'be broken up into sep-
arate components: yawing motion, rolliing motion, and spiral mo-
tion. We obtaln the characteristics of the first two motions by
assuming stralght-line plane motion of the vehicle 1n which 1t
describes oscillations about the veloclty vector, whose rotation
is not taken into account. This assumption is based on consider-
ation of the large inertia of center-of-mass motion under the
asction of lateral forces. In this case, the first equation of
system (2.&5) 1s excluded from consideration. Applylng the re-
lations y=p and e, =%, which are valid for this motion, we
rewrite the equations in the form

Pns b+ nap=rgor, +m 3t 1 3
eyt e, == o+ L+ B 3,85

V=f°xl,

(2.46)

where ny=n; +n. .

This equation system 18 used when there 1s a strong cross-
coupling between the roll and yaw channels via the coefficlents
n_ and 1.. Further simplication 1s possible only after prelim- /53

o

y r —_=
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inary studies of the solutions of this system. Por axisymmetric
ASV's, for which the coefficients n, and Zr are small, and for

airplaneuéonfigurated vehicles with roll stabillzation, the equa-
tions can be further separated by channels: ‘

Yy — rgp=1; 33

(2.47)

Wp— ttUJ_,,] == lﬁaan;_
. o

=
Y EY

~ The first equation of (2.47) describes the yawing motion
and serves for determination of the basic charactéristics of the
vehicle's response to both control and disturbance inputs. ~The
second equatlion describes the isolated motion in roll and is used
for the same purpose as the first. :

The spiral motion 1s a slow motion with a large time constant.
A small spiral instability is permitted . most ASV's so that it
will be possible to obtain the desired values of more important
flight-performance parameters, such as the relative damping fac~-
tor for yawing motion. Spiral instability is not usually regarded
as an undesirable effect because (owing to the slowness of the _
motion) it can easily be eliminated by the pilot or by the control
system. In the absence of control, the angles of yaw and roll
increase and the airplane gradually builds up a motion with high
velocity along a descending spiral. :

The characteristics of the spiral motion can be obtained from
Egs. (2.45) by considering rolling motion without slip and with-
out consideration of the yawing moment:

by=—-Z-; (2.48)

(I.JJ_.I ={t“jﬁ}.‘1 _}_lf‘;‘)ﬂl -{_ lanaﬁ;
or
_"\}“_;lt\.’x“‘*g‘ r‘f‘f‘laaaa- (2.49)

Often, in an analogy with the short-period motion in the longitud- /5

inal plane, yawing motion is studied with consideration of the

equation of the lateral forces on the Oz axis. Applying the re-

lations ¥y ¢ -8, ¥z ¢ -8, and w_ = ¥, we obtain from the

first two equations of system (2.45)
v -+— zﬂllrm ._zﬁb... zﬁ,ﬁr;

i . (2.50)
A I e BT N
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This separation of the vehicle's motion by channels usual-
1y makes it possible to establish the vehicle's basle dynamic
properties, For rockets with aerodynamlc controls and for a
number ¢f airplane fiight modes, however, this simplification

o may lead to substantial errors 1in estimates of the vehicle's
*1acal stabllity. In these cases, 1t becomes necessary to take
account of eross-coupling between the individual forms of motion
without greatly complicating the mathematical medel of the vehl-
cle.

As we know (7, 221, the relation between the longitudinal
and lateral motion 1s mediated by the aerodynamic, kinematic,
and inertisl interactions, and by the gyroscopilc moment of the
engine, and the terms of the egquatlons that describe these
couplings are nonlinear. The aerodynamic effect 1s taken into
account with longitudinal aerodynamic-force and moment coef-
ficlents of the second and higher orders, e.g.,rnf,mﬁh m?w,m?ﬂ

am

m,x, ¢, ete.

, By kinematic interaction, we refer to the simultaneous
change in the angles of attack and slip when the vehilcle is
thrown sharply into a roll. This interaction is taken into ac-
count in the equations of motion through the terms amx'and wa’

and strongly influences the dynamlics of the motion 1n flight at
large angles of attack and slip. We shall henceforth discuss
only these two types of Interaction as being the most 1lmportant
ones. It is known from practice [16, 19] that the dynamics of
the vehicle's motion are subject to the wldest variations in
the roll channel (equation of moments about the longlitudinal
axls of the vehicle).

For airplane-configurated vehlcles with a single plane of
vertical symmetry, the nature of the longitudinal motlon is
generally rather insensitive to changes in the steady angle of - /55
attack (1n the range of subcritical angles of attack). Further,
when we recognize that the angles of slip are smgll 1n most
flight modes (except when complicated three-dimenslional maneu-
vers are belng executed), we may neglect the influence of lat-
eral motion on the latter. The simplified equations of lateral
motion can therefore be wriltten as follows with consideration
of a number of aerodynamic and inertial Iinteractlons:

b= 2 (o) oy 00— 20 B

ni:yf-.:—-ng,B—-n,my—ny(a)(ox*nﬁr'o‘,: o (2.51)

":‘x=r“‘!=’i ((I, Ba) f— lr (Q) My _'[t"’.r _‘[3.,3:_ 'r’:, {a) Er'.
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Several coefficients of this system are nonlinear functions
of the longitudinal-mection parameters and reflect the change
in the conditions of flow past the aerodynamic surfaces on .
variation of a and Se. One of the possible simplified methods

of investigating lateral-motion dynamics consists in "freezing"
the angle of attack at various levels and using equation

system (2.51) as a basls for determining a series of transfer
functions with coefficients that depend on the parameters

o, and & Assigning various values to o, and §_ , we can use

0 &g 0 . &y

the method of small perturbatlons to take account of the effects
of the longitudinal channels on lateral-motion dynamics.

For rockets with axlsymmetric wing designs, the longitudin-
al and lateral planes of the motiocn are equivalent in regard to
the development of normal forces, i.e., the angles of attack
and slip have laentical ranges of variation. A normal force
can be developed in any direction by assigning specific combina-
tions of angles o and B. In this case, the additional moment
that arises around the vehlcle's longitudinal axls due to the
"ecrossflow" effect can be taken into account with sufficilent
accuracy by the relation [22]

L =mad (B — a?) -+ m, (ah,— B3,), (2.52)

where ml and m, are constants.,

Considering the aerodynamic symmetry of the rackets and
the most significant couplings, we write the equations of three-
dimensional motion in the form

a:—-—'zca'{“mz—ﬁmx: /_56_
‘;’z'_'"“ R0 =y — nﬁ—,a@;
b= —2pf+w, J- a0, L (2.53)

0y = — 1pfl — 72,00, — ns 8

0 = — Lo, — Iy By Lhs

Preliminary investigation of system-stability problems re-
quires conversion to a linear model by the method of small per-
turbations. It is generally necessary to carry out the anal-
ysis for various combinations of angles of attack and slip and
control-surface deflections. '

We shall consider the most typical operational flight modes,

from which inferences may be drawn as to the nature of the three-
dimensional motion as a whole:

s a))longitudinal channel with "frozen" lateral channel (B0 =
= 0O)-
T 3
0
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-‘\b) lateral channel with "frozen" longitudinal channél (ao =
8o, = 0)5 .
ey - >

.‘ d);ao'=

Wy

g
S+l

& ) N ,L )
de T S+ T 4T
‘ I '
. . ol
E’l o 5
A (2,1 p T wy
. L™ ) \ e TR

Figuré 2.5. Structural Diagrams: of Vehicle
With Consideration of Cross Coupling Bet- .

ween Channels Due to Large Angles of Attack
and Slip.. :

" In these cases, the static value of the moment-L;f

zefo. Applying increments to the varilables a, B, w,
§

equals

s W, & _,

. y e

ps and &, and following the usual procedure: for linearization
of equations, we obtain the system BRI

K ﬂ= -*Zpﬁ-}-t;}y"'[-ﬂ;,w,;

E:='-—-za [0} —' (1 .
o + z po X my=-naﬁ—fl,—my—na!3,,:

0= —n0 1w, — s B

" (2.54)

We== ""E’:“’x""lﬁ_uae'j' la—1% — li’ 8y — %’E’ L
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where Le=mB, (B — 3ag) + mydes /

1 =mya, (385 — 03) — My

J_ﬁ' = 11,8, /87
- -
L= — gl

increment symbol before the variables is omitted for brev-

the
).

Ety
Figure 2.54 a and b, presents structural dlagrams of the

equation system (2.54) for the basic operating modes after

Laplace transformation with zero initial conditions (see Sec.

E.ﬁ). Thus, using equation system (2.54), we can obtain various

transfer functions with consilderation of cross-couplings between

channels for use 1n study of the closed-loop control systems. /5!

Other approaches to evaluation of the effects of cross-coupling

on the dynamics of vehlcle motion are also possible within the

framework of the linear theory. For example, conversion to

cylindrical coordinates is recommended in [22], since their use

makes 1t possible 1n many cases to take account of the basic

couplings in the wvehicle's three-dimensional motion in quite

Simple form ("crossflow" and kinematic and inertial couplings).

Let us turn to linearization of the equations of motion
for ballistic missiles and rocket boosters. As we noted in
Sec. 2.2, the Coriolis force and moment Fo and MC and the force

and moment that arise as a result of the mobllity of the liquid
in tanks, FZ and Mz must be introduced into the dynamic equa-

tions of an ASV regarded as a rigid body (2.5). In addition,
Eqs. (2.18) for the generalized coordinates q, and Pys which

characterize the position of the free surface in the v-th tank,
must be attached to system (2.5).

Everything that has been sald concerning separation of the
vehicle's motion into lateral and longltudinal motion and of
the latter, in turn, into long-period and short-period motions,
also applles in the case of ballistic missiles.

Uslng the procedure for obtaining the linearized equations
(2.36) for a rigid vehicle, we obtain a system of linearized
equations of short-period motion for ballistic missiles and
rocket boosters in the following form:

mVsb= Feaa +FIA8+ F33 -+ Fpzad—

N -
_ZRqu'; (2055)
v=1 .
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J A= Msaat M3 m+Maa+M‘;’m&——

- Rv v Rﬂ /' |
,E_, e Zl v (2.55)
qs’|—5v‘?s+92qv R\IJVAﬁ—I—RIsA{}_
. —RVBAS-
‘rom. this system, we execlude the angle 6; neglecting the small /59

Iuantlty F"ZAJ and omitting the symbol A for simplicity of nota-

;ionj‘and using the nomenclature presented previously, we obtain
1 system analogous to (2.38) in the form :

hY -

0 - 2,0 —w, L ERWLF" = — 218
you ] )

N . .
@, + 10,41 5‘+ﬂua+27§’;§q,=msaf; 1 - (2.56)

=1

é‘+ss qv+ quv= ——R‘yv_‘.é.“l—(R{é‘l‘Rvny) ‘;’z_
— Rvy (Vo_x_ g.r) 3.

As we noted above, the lateral motion 1s described in the
:ase of axisymmetric vehicles by & system consisting of twe in-
jependent equation systems — in the yaw plane by a system anal-
ygous to (2.45), 1.e., .

A 3

by, — g3+ X Rug=2 2
. —l T
it (2.57)
Wy, +nﬁk3+n{i;'+nr“’;, _T'l Rv";qv=-'n5!ar;
=l

‘}‘v—l_s_vév—l_QEQvE —R'_' v_\p —l—R";'L:Jy. —
_R'Z(Vox—g.r)"'.“

ihere Y=,

ind a system describing the motion in roll:
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N

(:)x'+§ R";fP‘:laaaa: . . ( 2 . 58 )

ﬁ!‘%‘ Pvp.v+93p$=[e'l“[‘w.rl'

2.4. TRANSFER FUNCTIONS OF THE AEROSPACE VEHICLE AS A STATION- 6t
ARY OBJECT OF CONTROL “_

2.4.A. Comparison of Solutions of Stationary and Nonstationary
Equations. The Principle of "Frozen" Coefficients

In the general case, the solutions of the stationary and
nonstationary equations can be compared, because of the com-
rlexity of the latter, anly with digital computers. We shall
therefore confine ourselves to g partial analysis with re-
ference to the case of the rather simple second-order equations
to which, as we noted above, the angular motion of the vehicle
and certaln other dynamic relations in the longitudinal motion
can be reduced,.

Let the second-order differential equation be written in
the form

T+ 20T g4 (P 4-2) Ty () = x (2) (2.59)

and let it reflect, for eéxample, the equation of angular motion
of a vehicle in which y is the angular coordinate and x = M is

the disturbance moment. If the coefflclents of Eq. (2.59) are

independent of time, 1.e., constant, the equation is said to

be stationary. When a unit-pulse disturbance 1is applied at the
input of the system described by Eq. (2.59) at time tgs 1.e.,

x:B[t_""o]- (2.60)
1t triggers a response known as the stationary welghting function
y=g[t—1¢,). (2.61)

It is convenient to introduce the biased argument t = t—t. with

0
the crigin at t = tO as the time reference, since then the

stationary weighting function g(t) will be a solution of the
equation

£ () Mg (V)4 (P ot) g (1) =3 [¢]. (2.62)

Thls solution is easily obtained by known methods in the form

4y



g[r):«:%—c"-‘siu w. (2.63) /61

In-a somewhat different notatlion for the cocefficlents of Eq.
(2.62), namely:

Tg(r)-+2(14oT) g (1) 4 [(# + Q) T+ 24 g (1) =3fr], (2.64)
" where |
i .
ﬂ%?+s, (2-65)
m:.l_ era | 2.
Lye] | (2.66)

the notation for the solution is modified accordingly:
; ,

I —Q?+ﬂ‘. T —_ (2.67)

T=———p — Ve :

gl T sin T]/ T3 -1, j |

but it remains stationary‘because it depends only on the one biased’
argument 1t and does not depend on the time tO of pulsing.

Let us now comﬁare the stationary welghting function glt)
written in the form of Egs. (2.63) or (2.67) with a nonstatlonary
weighting function of the form

g[r,ﬂ). T sin Qv.. . -

Hereltﬁe criterion of nonstationarity is‘the dependence on two
arguments - 1t and to.

Let us establish the form of the differential equation whose
solution for a unit input pulse will be the nonstatlionary weight-
ing function (2.68). For this purpose, we rewrite (2.68) in the
form - ' : ’ '

(to‘“f"t)g:"é" e~ silt Qr, ' (2.69) |
differéntiate once with respect to 7:
el FDE=— ol Dgtemcosr (2.70)
and differentiate again:
| B e e S LD | /62
— se="cos Ot -7 [1]. (2.71)
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The pulse appeared in the right member of Eq. (2.71) on dif-
ferentiation of the function flr)=c¢-"cos2t, which equals zero

when T < 0 and has a unit jump at v = 0. Let us express f(t1)
as a funtlon of the other terms in (2.70) and substitute it in-
to (2.71). We then obtaln

(ot V) -E2 1 -E(tp+ 1] & 1 [+ 20) (1)
420 g=3[1]. - - (2.72)

This equation has variable coefficients that depend on the time
to + 1 =1%, and 1s therefore said to be nonstationary.

Its solution (2.68) was used to write the equations, but
the converse problem, with which it 1is generally necessary to
deal, is immeasurably more complex. Recourse 1s therefore
taken to approximate solution of the nonstationary equation on
relatively short intervals of variation of the biased agreement
T, sSubstituting the equlvalent stationary equation for it. One
of the most common substitutions consists in "freezing" of the
variable coefficients, i.e., fizxing their wvalues at the begin-
ning of the interval at T = 0 and extending these values over

the entire interval from T = 0 to v = Tmax.

Applied to the nonstationary equation (2.72), the stationary
equivalent will take the form

.‘.‘08-;9 [F)4-2 (14-ot,) e‘s;.g‘['c)"l"[(ﬂﬁ _"_'éﬂ) o+ 20] go[v)=3][1]. ( 2.73)

The analogous equation (2.64) has already been prepared, so that
its solution (2.65) can be used as the answer in finding the
pulse response of the equivalent system given by Egq. (2.73):

1 -
: ~\gto) = S
2 [r)=—-—l-f—e (t.. ) Sill—LVQEtg—l- (2.7“)
- Verr fo
Let us now compare the exact and equivalent solutions described
by (2.68) and (2.74).

‘Initial values

1
flot)=2= 3 g0 =——= /
Rty V' and—

1
"—:glorfl))' P ——————

V(=]

Characteristic frequencies

—_——

f—Vé%~4::9 /1—eLf--
4]

e
Qs "

we

4o



e
Lo
L)

|

Damping conditions
L - (2.75)

ety £ € T,

th+T ’ fy &)

We see from the compariscon that the 1initlal values and the fre-
quencies move closer together at values of the product Qto that

are sufflclently large compared to unity. The damping conditions
are described by functions that have the fundamentally different

cofactors 1" ana %—e %, but the additional damping in-

o+ T
troduced by the varying denominator in the solution of the non-
stationary equation is offset to some degree by the increase in
the damping decrement in the stationary equivalent, as can be
seen on expansion of the two solutions in series:

fy f F I T P

, .
1 =fn_ 1 T T2 78 +

with attention to the first terms.

The convergence of the nonstationary and equivalent station-
ary welghting functions also ensures simllarlity of other response
forms, since the welghtling function serves as the kernel in the
equation of convolutlon with any input disturbance. .

Thus, a harmonic disturbance causes a response whose steady /64
part 1s proportional to the frequency response and an important
Index to the dynamio properties of the vehicle, including 1ts
stability.

If the varlable parameters change only slightly during one
(or a few) oscillations, it 1s admissible to substitute the -
statiocnary equivalent for the nonstationary object. With time,
however, an increment that must be taken into account may ac-
cumulate, even 1f the parameter varlation 1s slow. In thls case,
several statlonary frequency responses must be asigned for the
nonstatlonary object, each of them equivalent on a certaln time
interval. In more general description of stationary systems with
the aid of transfer functlons — just as in the case of the fre-
quency-response curves — equivalence to the nonstationary object
wlith a given tolerance can be obtained only on a limited time
interval. If the tolerance is exceeded, 1t 1s necessary to
assignseveraltransfer funetions — each for a definite time in-
terval. :
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2.4.8B. Conversion %to Transfer Functions

Transfer functions can serve as exhaustive characteristics
of an aerospace vehlcle as an object of control if the principle
of linearization of the initial equations and conversion from the
nonstationary system to the statlonary equivalent are possible.
These conditions are valid for the angular motion of the wvehicle.
Let us consider the angular motion in the form given by (2.59),
but endow the input and output coordinates with more general
connotations. Let the disturbance be given by an original func-
tion; then the response of the previcusly undisturbed system
would also be an original function, and they can be written as
the respective Laplace transforms:

X [f)=M [f) <X (s); (2.76)
gi)=9[) <Y (s). - (2.77)

For the above transforms, Eq. (2.59) becomes the operator equa-
tion

(QBS’—]—QIS-*-QO)Y (3)=X(S), ‘ (2 . 78 )
whence the solution is to be sought in operator form AL
V(s)=W (s} X (s), (2.79)

where the transfer function is

W (s)= . (2.80)

agst4- a5 + ag

It will be more convenient to write 1t in the standard form used
for the linear elements of automatic control systems. Here we
can convert from the transfer function in the notation of (2.80)
to one or two different types of elements, depending on the signs
and relative magnitudes of the coefficlents ag al, and a5, which

determine the nature of the transfer-function poles.

If all coefficients‘ai (i =0, 1, 2) are positive and

gy '
e S 1’
PR

the transfer function has complex conjugate poles and corresponds
to the standard oscillatory element _

k

W= 1 (2.81)

1

where k==;;- 1s the gain (transfer constant) of the element,
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ap

T??L/ ] is a relative time cdnstant{ and 5"5—-<:1 1s the

-relative damping factor - The poles of transfer function (2{81)
can- be stated in terms of the coefficients introduced above;

: ia%,== E'+JV1_Eﬂ e %_ Vi?g.-:_.-(aéazj

v

When’g > ‘1, the functlon (2.81) will have two real poles:

5 — -a:—i—la,—-la(p»_» N -~E+V 1 ‘ _/_/_§_6._
1 2(."2 ‘ T (2.83)
—a;=Val—da@;,  _—yE=1
ﬁa=‘ 2as = T
and can be .written in one of the followling forms:
W(s)= : V - Ik/Tz V2 : —
0 (o e
_G*’T T s r_)
| — k . ' ' (2.84)
T2(s—B) (s—pa)
[ k
E—VE—1 E+VE—1 | (2.85)
ST stk -

The first form (2.84) corresponds to cascaded (series) connection
of two aperlodic elements; the second form (2.85) represents the
equivalent parallel connection of two aperiodlc elements haV1ng
the time constants

Tl=__.____r_._...;. and T,= =T
E+VE—1 &—f@~1
and the gains '
K
k == - = ]
U okvE=T—@— 1)
= k

2 VE=T+@—1)]

With the above nomenclature, Fig. 2.6, a-c, shows various

Lg



X structural diagrams: for a vehlcle 1n AN

e angular motion 1n accordance with
) (2.81), (2.84), and (2.85). Differ-
- erent values of the relative damping
— _i LA factor correspond to changes in the
Ts+1 Tpst! aerodynamic configuration of the
b vehicle and flight conditions., At
j%;r high flight speeds in dense layers of
3%;%— the atmosphere, the dynamics of a
. % . vehlcle with developed tall surfaces /68
3 in the yaw and plteh channels 1is
VL described by the transfer function
Do of two aperlodic elements (2.84) or
c) (2.85), i.e., the condition £ > 1
ka? 1s satisfied. In the rarefied at-
SieQ2 o mosphere at greater helghts, the
a) damplng factor decreases and the
vehlcle 1n angular motleon at § < 1
Ak L is described by the transfer function
Trs—t 25+ of an oscillatory element (2.81).
€ Under the condltions of flight 1n

space, or in the atmesphere when the
vehlcle has weakly developed tall
planes, there is practically no

Figure 2.6, Transfer
Function of Vehilcle's

Angular-Motion Loop 3dam =

ping (£ = 0). The dynamies of
Represented as Combina- the vehicle's motion is then de-
tions of Standard Ele~ seribed by a transfer function of

ments. a) Oscillatory
element; b) two aperi-
odlc elements In series;
c) same in parallel; d) W(s) =t #¥ (2.86)
conservative element; T4l 2497

e) stable and unstable
aperiodic elements 1n
series,.

the conservative-element type:

where @ = 1/T 1s the natural frequency
of the undamped osc¢lllations in the
angular motion of the vehilcle (see
Fig. 2.6d).

If the aerodynamic layout of the vehicle places the center
of pressure forward of the center of mass, as 1ls characteristic
for designs with vestiglal tall planes, the coefficlent 8, in

Eq. (2.78) becomes negative and the transfer function assumes the
form

W (s)=——o = u . (2.87)

a2t ais—ay T252 4- 26Ts—1

Then one of the transfer-function poles
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=g+ VETT
8= pn
R

p:;—é—Ve+1'
2 T

]

(2.88)

(the: first one) 1s positilive, so that the transfer function can
be represented in the form of the product of transfer functions
of stable and unstable aperiodic elements:

| -W’-(S)" - T (2.89)

S (3+ E+VE2+ )( 32-;-1-&) + 63
or in the form of the algebraio sum of the transfer functlons of
the same elements with appropriate galns:

_ : E #

W (s)= o7 VEE+ | o ayeE+r . - (2.90)

EFVELH] VEZ+1—¢ '
s+———T———— s-———'—}—‘———"

- Figure 2.6e shows a cascaded combination of the two elements
whose transfer functions appear in (2.89). The conversion to the
parallel scheme can be made by analogy w1th the schemes shown in
Fig. 2.6, b and c. : “

2. 5 TRANSFER FUNCTIONS AND STRUCTURAL DIAGRAMS OF AEROSPACE VEHI—
CLES :

Here we shall examine more complete structural dlagrams of
various classes of aerospace vehicles, using the "frozen coef-
ficient" prinelple and the Laplace transform. We apply the La-
place transformation to the linearized equaticns (2.38), which
describe the longitudinal motion of a winged wvehicle, so that we
‘obtaln the structural dlagram of Fig. 2.7a). We determlne the
transfer functions with the aid of structural transformations of
this dlagram (25, 267, comblning several elements into general—
ized elements (Fig. 2.7b), from which we obtain :

“r__ w8 AT+l
te 3?“?;${7%{%2@53+1' (2.91)
We = a(s) — k3 (T35 4~ 1)

w‘t'. Ws (s) Tis+1

where

o1
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FPigure 2.7. Structural
Diagrams of Winged Ve-
hicle in Leongitudinal
Channel. a) Original;
b} transformed.
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(2.92)

ny 4z
i, T ¥y

The numerical values ¢of these coef-
ficlients for the F-101 airplane are
given in Appendix I ( Figs. I.1 and
T.2).

£10

Flight-vehicle transfer func-~
tions in the longltudinal plane for
long-period and short-period motlons
(complete functions with considera-
tion of the gravity component and
simplified functlons without this
component) are given in Appendix III
(see Table III.1l).

Applying the Laplace transfor-
mation to the linearized dynamic
equatlons of the wvehicle's lateral
motion with zero initiagl condlitions
(2.46), we obtain the structural
diagram shown in Flg. 2.8a. With
structural transformations, we
obtain the transformed systems of

/71

Fig. 2.8, b and ¢, in which the series of elements forms transfer

functions of the type

where
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Figure 2.8. Structural Diagrams of Winged

"Vehicle in Lateral Channel:

b} and ¢) transformed.

a}) Original;

Flgure 2.9, Structural Diagram of Bal-
listic Missile With Consideration of
Sleshlng of Llquid in v-th Tank.
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Appendix III (see Tables III.2 and III.3) indlcates lateral-
motion transfer functions.

The transfer functions of a ballistic missile can be obtained
from the system of linear differential equations (2.56), (2.57),
and (2.58). We apply the Laplace transformation to (2.56) and
build the structural diagram for the motion of the missile in the
longitudinal plane (Fig. 2.9).

We see from this structural diagram that it incorporates in-
ternal loops that take account of llquid sloshing in the tanks
(for the v-th tank in the diagram). In Fig. 2.9, these loops /77
are enclosed in the dashed. rectangle. Structural diagrams for “*_
lateral motion and roll can be obtained in simllar fashion.

If 1iquld sloskhing can be neglected in the dynamic proces-
ses, the following ballistic-missile transfer function can be
derived from Fig. 2.7:

% (5) (T +1)
wr}} — 1 . ( 2 . 9 u )
ae(s) ba(s) ¢ (7‘352 + 289705 -4 1)

The relations for calculating the parameters of a ballistic mis-
s8lle are identical to (2.92).

If the effect of gravity is taken into account, the ballist-
ic-missile transfer function assumes the form

W (s)= $¢s) ki(Tis + 1) _
T % (T4 2T+ 1) (T4 1) (2.95)

The numerical values of these ballistic-missile parameters
are presented in the form of plots against time of filight ¢
(see Appendix II, Fig. II.1, a and b). It is seen from Pig. II.1b
that the constant T3 is negative. This is explalned by the in-

fluerce of the force of gravity, which tends, as the missile as~
cends, to increase its deviation from the original trajectory.
The presence of the unstable element with time constant T3 in

dlcates the instability of the metion of an unguided ballistic
missile on its trajectory.¥

¥See A.A. Lebedev and V.A. Karabaricv, Ulnamika System Upravlenlya
Bespiletnymi Apparatami (The Dynamics of Pillotless-Aircraft Con-
trol Systems). Mashinostroyeniye, Moscow, 1965.
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CHAPTER III : /TH
ANGULAR-MOTION CHARACTERISTICS OF THE AEROSPACE
VEHICLE AS A STATIONARY LINEAR OBJECT OF
CONTROL IN RESPONSE TO STANDARD INPUTS

3.1. RESPONSE OF UNGUIDED AEROSPACE VEHICLE TO STANDARD INPUTS
APPLIED IN ANALOG FORM

3.1.A;'Casé of Strongly Damped Motilon

We stated in Sec.2.U4,B that the relative damping factor &
exceeds unity in the case of a developed tallplane design,
high speed, and hlgh atmospheric denslty. In this case, the
transfer function of the wehlcle 1n angular motlon can have
two real poles [expression (2.83)] and can be assigned with

(2.81).

- Let us rewrlte 1t 1n the form

= 1 L1 k
W(S)-"( s — 8 5By ) T2 —By) (3.1

For an input disturbance gilven in the operator form X{(s), the
transform of the reaction 1s

[ X{s) _ X (8) ‘ k
y“*‘[swm Py ]Tum—m)' (3.2)

We take the qulite general rational fractlon form for the
transform of the input process:

Uisy _ () _
A T APt y e S P (3.3)
which covers most lnput-disturbance types encountered in practice.
The poles ai (z =1, 2,... m) of the input disturbance may be /7

real, complex conjugate, simple, and multiple. For our initial
analysls, we introduce a natural limitatlion, assumlng that the
poles'Bl and 82 of the transfer function do noct colncide with

any of the poles ., of the input dlsturbance.
1

Using the general notation X(s) for the transform of the
input disturbance and the detalled representation of this dis-
turbance 1in the form of (3.3), we convert on the basis of the
expanslon theorem (using the methed set forthin [26]1) from
(3.2) to the expanded transform of the response:
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- i —t
Y(s)=—Ff [ XG) __X(B ]+E W(a;)X(a;)+

212(31—32) §~—f §—fo S s—a;

’ ‘S-—Cl,-
Q1 (& [ WX :
+ ZﬁT {E[“‘;Tx ;T.‘.;'f}' (3.4)
LEFESH [

The first group of terms on the right in (3.4) contains the
pcles Bl and 62 of the vehiele's transfer function and the nu-

merical coefficients X(Bl) and X(Bz) obtalned on substitution of
concrete values of the poles Bl, 62 into the input-process '

transform in place of the argument s; it reflects the vehicle's
natural motion Ynat(s):

Ve ()= — [ XG) _ X7
A Y [s—m s-ﬂ'sg]‘ (3.5)

Converting back to the originals from the transforms on the
basis of the inverse Laplace transformation, we obtain the gen-
eral form of notation for the natural motion, which is valid for
any type of input disturbance:

. X (Br)exp 31t — X (8p) exp Bt
¥ =k . .
nat [ J T2 (81 — Ba) ( 3 6 )

The second group of terms on the right in (3.4) contains the
poles oy of the input-disturbance transform and reflects the

forced motion onr(s). Among the total of m poles of the input _
disturbance X(s), we distinguish multiple poles a, , which form /76

K groups with order of multiplicity Ty + 1 in each group and

nonmultiple poles o; (i=1,23,...,/), for which ry = 0, 50 that

*
m=j+¥ntl)=rt+ 3 (3.7)
i+l k=il

where j is the riumber of nonmultiple poles and u is the number
-of different poles (u = < m).

—i —k—

The coefficients of the expansion X{u), X(¢) are obtained

f'rom the transform“(3.3) by striking out the respective polynom-
ials s — o; and s — @, in the denominator, i.e.,
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J— J— ) U :
. X(a1)= - (a) . +1=
Unees(S—a (s —ag)...(s—ap) [T(s—ap*
’ ()

__U)

Vi) (3.8a)
-
X (@)= U (@) -
v [1{s—ap...s— ak_l)'izhl“‘l X
(i)
X {8 — agpip) Tpp1t] --(s—ap‘.)'i"“
- ’klU(ﬂ-n)_
a i
.8b
[ s (3.80)
ﬂ-ﬂk

It 1is shown in the right-hand sides of (3.8a) and (3.8b)} how the
operation of canceling A polynomials is replaced by the equivalent
operation of differentiation of the denominator V(s).

(3.4 We write out separately the second group of transforms 1n
3.4):

V"fo_r(s)zz W(“[)X(Ct‘)_]_

w ST
—B—
+ { 1. 90" W(a)X(a) 1,
‘zk) rl : f S—qa ::::I (3‘93-)
i \ i
) §) e e A A} BN
for () 72 {ﬁ;‘ (@r— ) — gy (s—a)
. —h—- (3.9h)
+> r—
" da” (a— ;) (G—ﬂz) (s—a) |*%
) %
We ﬁow convert to the original of the forced motilon:
o _ -
Vi lt)= ZW (@) X (@) exp(ay) +
J
+2 05 W@ X e (3:102)

(=)

r-.l'k
G-Rk
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or

—f

Y gor [f)=—— X (@) |
for )= 73 {m =8 =y PO

(k)

G-Ek

It is seen from {3.10, a and b) that the partisl processes
exp (ait) in the input disturbance also remain In the vehlcle's

response, and that the transfer functlon of the vehlcle affects,

only the partial scales., Moreover, in the multliple-pole case,
when the parameter Oy is differentiated to separate the cofac-
tor #(=1,2...n)h, functions fexp{axt) wilth exponents 1 < r,. that
were not present in the input may appear in the response. Let
us give a detalled illustration of the application of (3.6) and
(3.9) to specific examples that are important for aerospace
vehicles.

Vehicle welghtlng function

Since the 1input-disturbance poles oy and o, are absent for

X(s) = 1, the second group of terms in (3.4) vanishes and
(3.6) can be used directly; hence

k

g[ﬂ::;;iitras[expﬁg-expﬁgL (3.11)

The transforms and orlginal of the welghting functien for
the expanded expressilons for the poles in (3.5b) will be

k 1
G(s)= —
) oT ¢ B — 1 ot £+ VE=1
T

1
-V E—=T |
=)

_ — A1) —
ttz[f)mm/e_{__1 [eXP( o VE=T) =

—exp(—t—VE=1)-L]. (3.13)
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(3.12)

—r
V(1 ¢ X (@) ,
+L{rl 2’ | (e— 1) (e — 5 e"p(“t)”,_,k“ (3.10b)

/78



With the poles.given by (2.88), among which there 1is one
positlve pole, the analogous solutions will be written

. . b 1
G(s)= e
= rvar (HW

T
L 1
_VE2_+E_::E_) (3.14)
s__-
T
k =T t
g)=———e -l —f)——
e [XP(VE-}- )
—exp(—t—VET |- (3.15)
In Table IV.1, the first line contains the expressions de- /79

rived for the transfer and weighting functlions. Also indicated
are certaln supplementary forms of notation using the time-

constant nomenclature 7}=b§~ and 7‘=r§w.
1 2

Transient response

The transient response hi{t) is the response to a unit

step input 1[t) that is constant in the interval from t = 0, to

t = », As the vehicle moves, a constant disturbing moment may
arise as a result of warping of the tailplanes, other constant
structural-shape distortions, and thrust imbalance. If at the
same time speed, thrust, and alr density remain constant, the
moment that arises from these causes will also be constant.
Variations of speed, density, and thrust will, even if the
structural deflections remain constant, cause an increase or
decrease 1In the disturbing moment.

~
les]

It is convenient to convért to the step function from the
exponential function :

e{t)=ev=expm, (3.16)

by putting n = 0; then
1{)=Hm e, (3.17)
-0
If n > 0, relation (3.16) takes account of the moment increase;
ifn < 0, 1ts damping i1s as indicated in Fig. 3.la.
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The transform for the 1nput

q“: 150 (3.16) will be
| | X (©)=E(s)——— (3.18)

n=0
! We prepare terms for substitution
- < - into (3.5a):
a) 1 1
At ~ X ()= Bi—m X ()= Ba—n
__,/’, P?)Q PZ<0
, ‘ For substitution into (3.10b),
[ nPa<l we find
{ X —J—- —f—
! X@)=X")=1,
Ol g, 0
b} where 1 = 1 and @y = a; = n. Combining
Figure 3.1, Conditions the results obtained after substitution
of Transient-Response of the elements into relations (3.5)
Execitation. a) Exponen- and (3.9), we obtain

tial and step inputs;
b) transient responses
for negative and one
positive poles of wvehi-
cle transfer function.

sl & [ 1 _
T (Bi— 1 (5 — B)

—_ 1 __k__ 1
(B2~ (s~ $) ]+ G a—me—m " oY)

It is easy to convert to the original
from the transform HE(S):

.k expfit _ exp Bt 8, —B> 1
fielil= [ L L expiiy.
== ey hmn T G=tr0—F0 PM)- (3.20)
If n = 0, the original will be the transient response /81
k 1~—egxpfd P —exp B¢ )
= - .
O=Fg=m A (3.21)
We write the fransient-response transform in greater detail
for negative poles Bl, B, assigned by relations (2.82):
1 i
S (e + VE=T)
k , T
H(8)=———— pe——— -
2y E=1 —E—VE—1
1 1 (3.22)
s+ o (6~ VE=T)
—t+VE—1
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~and the corresponding original

T
k)= A SRAN ALY —
2y =1 —e~VE=T
1 —exp(— i+ VEST | (3 23)
—t+VE—T '

In the case of unlike signs of the poles, m>0, <0 , the
transform of the transient response and 1ts original take the

respective forms 1

1 i
—— V] —
s T(l& Fi—¢)

H ()= ———— — +
- 2V 1 VE+T—¢
a1 !
) —(YEFT+8)
" S+ p 24+ 148 (3.24)
VETI+¢ '
exp(l”s?+1—~e)f7—-1 /82
k)= - _ ——e —+
) 2y &1 YET1—¢
1—exp(—VEFTT—8) 7 .
— .2 .
i VeTite (3.25)
Standard transient-response plots appear in Fig. 3.1b.
Response to linear and power-law variation of moment in time
The power-law dependernce on the time t¥ nas the transform
vio.
X (O =—g >t (3.26)
It wlll be convenient at first to consider the more general func-
tion ‘
X (s)= — e, (3.27)

(s ="

from which the conversion to the power-law function is made by
substituting n = 0.

To determine the response to the input of (3.27), we shall

use relation (3.4), into which the following series coefficients
must be substituted:
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P e —

(B — 't }
X)=—"; |
RS i (3.28)
—k— —le
X(ep=X(m=, |
WhEPe k=1, a§=11, l'k=v.
The response transform for the transfer function
k
w =
(=S
is obtained after substitution in the form /i
kvl i
Tz(s)= [ —
=) T2@h—2 L @—nt s—8)
1 a3 [ k i ]
Ga-mHs—8)  on LTMIHEM+L s—n ) (3.29)
whence follows the original
e [f) = kvl [ expthit exply ]
T2Ei—8) L @—n"t' (G—n
 f exp vt
+kaf \ﬂﬂ+zwm+1)‘ (3.30)
The second term in (3.30) reflects the forced motion HE
for

We write it in expanded form, using Leibniz' theorem for dif-
ferentiation of the product:

Oz, [)=ed [0W () fve-W' (m)+

+20=D gy L wo ) (3.31)

In the case of a power-law input disturbance (3.26), relation
(3.29) yields the transform of the function with n = 0O:

TI(s) kv! ]. 1 _ 1 :l +

= T2E—BD | 1t (s— By B3tl(s — 82 ‘ .
. {(3.32)

+ a'( k ] 1 )
' ot \NTHIH 2T +1 s—7 Jf,_a'
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whlle (3.30) ylelds the origilnal

H[t)= Al [ expB expBgL_:I+

TiG—f) | gt !
@' expnt
+k[w (ot )],,-o (3.33)
and (3.31) the forced motion
Mg (=W (0) 4wt (0) -4 L= W (0) . | /84
oo WD), (3.34%)

We determine the derivatives of the transfer function W{(n)
with n = 0 by continuous divislon of the numerator of W(n), i.e.
k, by its 1lnverted denominator, which glves

ok 1 BTy T
(—2%Tqg—T!ne =~ [1—26Tq + 4 (82— 1) T2 —
[(452— 1) T292 + 287318) & - 4E (262 1) T334
[— 4 (262w 1) TS93 e + (16§ — 1282+ DTt . . 5 ] &

— (82— 1) T4y} 2

Since the quotient must be identlically equal to the Maclaurin's
series

, W (0) 3 ' '
WM=WO)+W (On+—7p-F . . ., (3.35)

we obtain on equating the coefficients at like powers of n

W(0)=k;
W (0)= — 24T
_W_;@L —=4h(B—1)T?
W”’ (0)
3
FOO _  p(168—12841)T

4l

= — 4R (20— 1)TY

After substituting the calculated values of the derivatlves
into (3.32), the latter assumes the form
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o, B =k — 2T L4 (@ — 1) T2 X
Xv(v+De-24 . . L. (3.36)

Relation (3.34) can be rewritten

Mo (V=W Q)2 () + W @£+ L 50+ . . (3.37)

The form of (3.37) is retained irrespective of the number of
terms in the description (3.27) of the input disturbance.

Various forms of representation of the natural and forced
motions are given in Table IV (p.190) for the power-law input
function. Regardless of the nature of the transfer-function
poles (pp.190-195),the formulas for calculating the forced motion
are identical and we may use any of them at will or the univer-
sal forced-motion formula (3.37), which 1is wvalid for all columns
and lines of the table.

Response fo harmonically varying moment

Let us consider a sine-wave input of frequency w and unit
amplitude, 1.e.,

thﬁuw2_(pq@@+p)?&nw' (3.38)

and substitute 1t into (3.4). For this purpose, we first evaluate
the coefficients of the expansion in the natural motion

= s X (B)=—2
X ()= Bl+m2 (85) 34

and the forced motion

] ] w 1

X (a)=X (jo)= P j2m ='-2'}—;
s, . s Zer W w 1
X(@)=X(—jo)= —o="TFr= =

where a=jo, a=—jo are the poles of the transform of the input
disturbance (3.38).

Using these coefficients, we obtain

I (s)=—t ( = L - )+

T2—~B) |\ g2+w2 s—F B2+ w2 S—f2
L1 [W(w) W(—-jm}] (3.39)
T 2; [S——-jm s+ ju )
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[Py

We operate with fhe transform of the forced motion separately: /86

o SIW () = W (= el e (W ) £ W el
Mo (8) = 2 (s2+ w?) B
_simW (j)+oReW (ju) (3.40)

524 w2 .

where we have separated the real and imaginary parts of the com-
plex transfer function

W (jo)=Re W (jw)+j lm W (jo). (3.41)
i }; Simplifying (3.40), we obtain /87
T (=W (o)) LR (3,42
X A

. - ) ' -0 - . : i Im W (juw) .
w=0 (=00 w=0| where p=arctg — 420 .

. . - - ¥ rchewum (3.43
N ol — - L |
\(*-"-’ =1 ' We now convert from the transform

S~ (3.39) to the original:

x/r‘s‘+gers-_r §<1 K/T3st+28T5+1 :
_ at S=jw ‘at &J-w r[t):— ka ( expBu . exp pof )

) . - T3 —F) ﬁ% + w2 Eg + w?
Figure 3.2. Gain-Phase PFre- . ) .
quency Characteristics Cor- 'leﬂjwﬂsm{mﬁ+¢y _
responding to Second-Order (3.44)
Transfer Function With '
Various Values of the Para-
meters.

The first group of terms
determining the natural motion
has already been analyzed in the
preceding examples, but with a

different scale.

The second term characterizes the forced motion, which is
s harmonic oscillation of the same frequency as the driving mo-
ment, but with a different amplitude and a different phase.
These ‘parameters of the oselllations are fully determined by the
gain-phase frequency characteristic )

2
%Tw w2 £ 1 - - (3.45)

W (jo)=

Figure 3.2 presents hodographs of the functlons W{ju) on the
complex plane as the frequency varies from w = 0 to w = = for
positive and negative values of the last term +1 in the denomi-

tor of (3.45).
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Figure 3.3. Logarithmlic Freguency Char-
acteristics Corresponding to Second-
Order Transfer Functilon.

The variations of amplitude and phase as functions of fre-
quency are indicated separately on logarithmic frequency charac- /88
terdisties (Fig. 3.3).

The inflections of the asymptotic logarithmic frequency
characteristics occur at the conjugate frequencies
f—vVE=T ,
T 1
_E+VEBE—1
(Dg—-———r——-

W, =
(3.46)

L]

for two negative transfer-function poles and at the frequenciles

f—vEET,
T 1
E+ VE+T

o= F Te+

for poles of unlike sign. Formulas for calculation of responses
to harmonic input disturbances appear on P. 191 in Table IV.1.

The last line on p. 195 contains the same formulas but with a dif-
ferent symbol for the frequency, w = 0.

--ﬂ)l..-=

(3.47)
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Response to oscilliating moment pulse

Figure 3.4 shows a form of pressure varilation that 1s en-
countered in practice 1n the combustion chambers of vehicle re-
action engines, in the form of brief osclllations that bulld up
initially in uneven running and then damp out. If, in addition, /89
there is a thrust imbalance, the disturbing moment acting on the
vehicle will also vary in proportion to thils curve.

This curve 1s approximated
rather closely by the function

()| | L - X(t)=1f"esin of, (3.48)
” - . which we shall call an oscil-
n[]n _Dnnﬂﬂnnnn’ lating pulse. In choosing the
recommended that the exponent
¢ be matched to the descendlng
Ty ! the cofactor exponent be ob-
I talned from the formula given

v I 1 - . - " ¢ C
UUUUU [/UUUUUUU e approximating function, it is
d branch of the curve, and that

in [25]:

Figure 3.4. Oscillating Moment
Pulse. ' v=ol,—1,

: - ‘ where Tq is the absclssa of the
center of gravity of the oscillating-pulse envelope.
The transform of the complex function (3.48) can be obtained

from the known transform of the sine wave (3.38) by the following
operations in the transform region:

il ‘ w wlf (s}
X =(—1) — M
(S) ( ) de” [ (s+ ¢)2 + w? ] (s + a2+ m2j‘+‘ ' (3 . }49 )

Differentiation has been carried out in the right slde of
(3.49), with the result that it has been possible to write its
denominator in general form and the following functions have been
obtained for the numerator, depending on the multiplicity of d4if-
ferentiation v: '

v=0, U (s)=1;
, v=1, U(s)=2(s4-0) ‘
: v=2, U,(s)=2[3(s + P —a?]; (3.50)
v={, S(8)=24(sFo)f(sLao—e? . . . ete,

To use (3.4) to calculate the response to the input given by
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the transform (3.49), it 1s necessary to prepare the coefflecients
of the expansion first for the natural-motion components:

44 "
X (8)= “y (81) —; X(%)= » (B2) 3
(81 + o) + w2+ [(B2+ a2 + w2+

then the transform of the natural motion will be

o Yy i3 j
T2(8—po) [(3; 4 g)2+mzj“.'1 s— 5

_ U, (8 1 ] (3.51)
[Bo )2+ o"H s—By

Q nat (5)

From this we obtain the original written in the form investigated
previously, but with more complex coefficients in the partial
functions (exponents):

o U,
7 pai [)= { 0 exp it

2(Bi—Bd [+ )2 + w2*+!
Y, (o) exp iyt } (3.52)
({82 + )2 4+ w2J**!

In calculating the forced motian, it must be remembered that
the transform of input (3.49) contains two different roots:

Uy=0=—0+jo, @'= —0~— ju=gq,

and can be written in the form of the product

X(s)= “Us(s) = 0. @ .
[G—a) (s—a)™  (s+o— jo)"t (s 4 0 4 ju)™+!
(3.53)
Thus we have for k = 3 and 4, ap = @, and r, =y
_— w

‘X (aa)z —_gl(_a')—— »
(a-—a*)’“
._)4(-(& ):M

¢ (ui - u}v'i-l '

Then the transform of the forced motion, which contains two terms
(k = 3, 4) will be presented in the form
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ol o U, (@)W (e)
Qg (5)= 2| -2
for (%) vl !,do'." (a—a*)+l(s—a)

/91
, @ oy (u¥) W (™) '
o (u*-—u)"’](s—a*}]. (3.54)
Since the poles a and o¥* are mutually conjugate, so are both
terms in (3.54), and their sum equals twice the real part of the
first term or twice the imaginary part of the first term multi-
‘plied by J, 1.e.
% {1 WU, @QW() :
QUerle)=—2 1m| \ : |
fort™ o | ey —a) (3.55)

In differentiating, 1t is helpful to use Lelbniz' theorem for the

L7 w
product of the two functions —— . and —lgl_fﬂ,
. (@ —a*)Tt! §—a

: To separate the differentiation sign from the functions, we
introduce intermediate nomenclature for the first function .

| L (3.56a)
(& ~ g¥)*+1 A

where
y:,_—a_a*=j2m_ (3-56b)

We can then substltute in (3.55)

ada”

R ) . (3.56¢)

and rewrlte it In the form

_ 2% EEERS
Qfor_(s)— o Im {( 3a -f"-é:-{-) X
JU, (@) W (2) y] (3.57)
(s —a) g Szt }
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Converting to the originals, we obtain

U W )
—M —U,(a)W (a)expot,

§—

and write the derivatives of this function with respect to o as /92
follows:

by :
— [/s (@)W (a)exp af] =cxp af (: +—:&-)k (@) W (a).

Consequently,

2w oy ) 3
Ffor [t)=____ﬂl-‘;(!—0 Im [[exp {jort) (t +¥+

.8\ M (@)W (a)
"-a_-r-) vtl u——-u-{-}m}. (3-58)

T T 2

We then write the forced response in the form of a polynomial:

Tfor [f):"z‘(ii(l':—cﬁ‘ [t'F,-|,—
“|‘t"'1F»—1+ . .. +fF1+.F0] (3-59)

We determine the function Fv from (3.58)

Pt | R UD Yy (—a o+ ) W (—o + jw)
27+ ()

= U, (—s+ jO) W (—af

2v+lwv+l

+ /) sin (@ +9— ),
where

Im[U,(—-cq-jm)W(-—a—;-jm)]
Re [U,[—c + jo) W (—o+ ju)]

p=3rctan

In its entirety, the first term of polynomial (3.59) will be
1, (— o+ ju) W (—25 + ju)|
(2a)*v

X fre=°tsin (mt—l—q: — VTH) .

¢ [t)= X

- (3.60)
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. Thus, the forced component of the response will contain the
input-disturbance function with different amplitude and phase
and, in addition, v additional terms with exponents t fromv —-1
to 0, but with the same frequency and dampling coefficient as
the exponentlal function. Each of these terms has 1ts own scale
(amplitude) and the correspondlng phase.

'~ Table IV.1l (p.191) glves the components of the natural
response to the oscillating pulse separately for each type of
transfer-function pole, and the forced part of the response 1s
shown in the form common to columns 2 and 3.

3.1.B. The Case of Medlum- and Weakly-Damped Motion

‘ The. dampling factor 1s characterized guantitatively by the
parameter £. The present case corresponds to values of £ in the
range 0 < £ < 1, which results 1n the appearance of complex con-
Jugate poles B, B*, which are deflned by (2.82), in the vehlcle's
operator transfer functlon. Since relation (3.&) takes account
of all types of poles, all of the solutions obtalned for the
preceding case remain valld for the forced motlon, so that it was
possible 1n IV.1 to display the forced solutions in a notation
common to both columns in most cases. In specific cases, 1t 1s
not difficult to convert from this common notation to specific
transfer functions.

Let us now discuss certain aspects of calculatlon of the
natural motlon.

We rewrite the first term of (3.4) in the form

& XE) XY _
Vnat ()= g [s—s s-—ﬁ*]

NS S .4  (3.61)

TYI—8  s—§

From this 1t is easy to obtain the origilnal reflectling the part
of the response corresponding to the vehicle's natural motion
for any type of 1lnput disturbance:

. . .t
Cbe . kexp(—-&-r—)
,Una_,_t__(tJ= T Vi?i?

X

X (-4 55

xsin(.‘? Vi=F+e); (3.62)

where
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\O
=

|

3 yT=2
Im X(—T -+ J T )

Rex(__;-“'l"lj—_—_ef) (3.63)

¢=4artan

Here the nature of the input influences only the scale
and phase of the oscillations.

wWhen the vehicle's transfer function is defined by (2.86},
its natural motion in the absence of damping is obtained from
(3.62) on substitution of § = 0, which gives

Y = 21X (/QVsi anln X (72)
mat [()= 21X (/Q)sin |24+ arce il (3.64)
where
9=—;-. (3.65)

Having the general formulas (3.61)-(3.65) for the natural mo-
tion and (3.10a) for the forced motion, we proceed to determina-
tion of standard responses for the same specific inputs that were
considered in the first case of Sec. 3.1A.

Vehicle welghting funetion

Instead of relations (3.12) and (3.13) with 0<E<] , we have
the following relations on the basis of (3.61):

L I
a(s)= : Im N
TVi—g =2
V ‘ s+—Tg-""jVT (3-66)
s t Ly
bow (~e) (3.67)
T) . .
eW=—r= )mn?TV1_g
In the absence of damping, i.e., for & = 0, we have
glt)=2sin L =5 sin o2, (3.68)
r T

Transient response

Instead of (3.22) for O<i<l we obtain a new expression,
for which we prepare intermedlate. quantities,

(s) the transform of the natural /95

e

Firstly, we denote by Hnat

motiondetermined according to (3.62) for X(s) = 1/s. We then
calculate the coefficient X(B8) for it:
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1 T ,
8= — = =7 ex -+ arccos ).
| XO=- _ =T plj(m+ 3l
CA
e
‘\ Then
\ v
\\ B 5H \ . ‘ .
\ 4 R — expl/(t + arccos .
\ Hnat (S)—' .V’l g lm s— 7 ==
- \*‘b;q,: A £ (7 asecos £)
g N — P — Iy S3P{J arceos B) .6
~ / ] \\ ]l «
1 SR
Il L@?r'f' T
? ~ The transform Hfor(s) of the
‘Figure 3.5. Transient Res- forced component is found from
ponse of Stable Oscillatory (3.9a), which is strongly simplif-
Element . ‘ ied and brought in the present

case to the form

H tor()=W (@Jumo=W (0)=F.

The general sum of the natural and forced components 1is writ-
ten

. . 1 exp (J arcces €) ,
\H_(S}_k[l e — ] - (3.70)

To convert to the original, we transform separately the com-
plex function ‘ '

L__l{'exp(jarccoss) L
s—§ }"

. ___exp[—'s_;_—'_j (arccosz-]—%m)]

and separate its lmaginary part
exp (-—- E—L){sin (—L 1/1 —t*|-arccos E) .
T T

Then the transient response assumes the form

PN R
T

LAY
M sin (-;‘_-— Y 1=2{arccos 5)] . (3.71)

T—¢2

H)=k [1—

™~
N

For t = 0 we have sin(arccost)=—V1—8 and H(0) = O.
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Figure 3.5 shows the transient response of a stable oscll-
latory element and indicates the period of the oscillations and
the damping conditlons.

For £ = 0, we obtain from the above formulas

H(s):k(I—lmeﬁp—ji"—g)———k(l—lm”fjg), (3.72)

s—p

H )=k (lm-cos _;-)_;-_-ku_cos o). (3.73)

Response to linear and power-law moment functions

We leave the forced response component in the form of (3.37),
and use (3.61), in which the value of the coefficlent X(B) must

be determined, for the natural component, Since X{s)=s~;4-_—1. we
have

. AT sl
XP)=-r—3 F V=g

=y| T +exp [/ (n + arccosk) (v 1)].

For the natural-motion ’9
component, this ylelds the

Yt v=2
transform nnat(s) =

()

\ kol

— m expl/ (w4 arecos §) (v + 1)]
Yi—g & Y=g '
T TITT T (301

~¥

from which it 1s easy to con-

Figure 3.6. Response of ASV vert to the original

Having an Oscillatory-Element sy ;
Type of Transfer Function to ITguFﬁ=(—4T+‘/T——§EXP(—41—)X
an Input Signal Assigned in - Vi—t r
E?gnF.‘orm of a Quadratic Func- « sin [%]/l_:i_ﬁ-y(v—i—l)arccosel.

(3.75)

Figure 3.6 shows the form of the response to a quadratic
polynomial for the value v = 2 and 0 < £ < 1.

For a vehicle transfer functilon characterized by the value
E = 0, the transform and original of the natural motion wlll be

Th



. -
orra [l 2]

IT pae (8)= o P (3.76)
ITmu[ﬂ=*£i:%¥jh:~um(9b+v€;). ‘(3-77)

This response, added to the components of the forced motion
{(3.37) for v = 2 and E-O is also shown as a separate curve on
Fig. 3.6.

~

Response to harmonically varying moment

If g«:<! in the equation of the vehicle, its natural
motion is determlned by formula (3. 61), in which 1t is neces-
sary to calculate the coefficlent X(R) for an imput having

the transform X1ﬂ==x2;h2,~ We obtain after elementary substitu-.
tion
X(ﬁ): —__+ ]/1-—52 b 2=
T T
oT2exp (j§)

TR IR = 1) u2 T2 1 wATh

where

2%VI—%

—=@artan .
YAt e T2

Now the transform of the natural motion can be presented
in the form

Y
VI +2(282—1) 0272 + 7] (1—£2

xl:ne”’f; (3.78)

,P_nat (§)= X

from which the following original 1s found:

4
kuT exp (-—-E P )

¥ nat [f)= VITF2 (28— 1) o2 + /T4 (1 — §2) .
Py %Y= 8 (3.79)
- Xsin (~—T— V=@ parctan o e )

The transform of the forced motion in the case of a harmonic
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input 1s still given by (3.42) and (3.43), and its original has
the form

k
V (I — i Ae 5T 12

. _ ——  28Tw ’
sin (mt arctan T ) . (3.80})

Figure 3.3 shows the gain-frequency characteristics of the
vehicle for £ < 1.

If £ = 0 in the equation for the vehicle, the transform /9¢

(3.78) in the natural motion assumes the form

klw 1
P‘ﬁt‘(\?)z o Ifl] s— U N (3.81)

and the original is now determined not by (3.79), but by

£9Q .
l"mt [f]=_§f;—‘2_ sin Qf. (3_82)

In the forced motion, the response has Instead of (3.80) the form

Mor [)= — - sin ot. (3.83)

The responses to the harmonic input are written out in Table IV.1
on p. 195,

The last line examines the case in which the frequencies of
the forced and natural oscillations coincide — a special case for
purely imaginary poles of the transfer function (column 3).

In this case, the general transform of the response becomes

r(s)—_—W(s)X(s)=G£———-Q;m. (3.84)

Putting o = JQ and y = J2@, we can use for the transform with mul-
tlple complex poles (v + 1 = 2) the expansion formula (3.57), 1in
which the product Uv(a)W(a) should be replaced by

Uy (@)W (@)=
we then obtain

r=zeetin {| (5 5) e (3.85)

L

~In the time region, we obtain the original
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rih=2e2im {[exp o0 (e +2) %] ) .
or | _ /100

r[f)_n-j— (sin 2¢— 2 cos 24, (3.86)

The amplitude of the second term on the right in (3;86),
i.e., . ‘

Aly=—4 S (3.87)

Inereases continuously, reflecting a state of ideal resonance, at
a Pate _

dA  kQ ' N

The first term in (3.86) represents nondamping oscillations. It
affects the form of the initial segment of the response, but be=
glnnlng at a tlme

20 ‘
o= (3.89)

1ts contribution to the over-all response becomes smaller than 5%.

If the natural-oscillation frequencies differ from the dis-
turbance frequency (see Table IV.1l, p. 195), the amplitudes of the
natural and forced oscillations present in the response will
stand in- a constant ratio .

Apat o .
Rrrral- (3.90)

‘whilch does not depend on time.

In thé presence of damping in the motion of the vehicle,‘the
forced-oscillation amplitudedeterminedfrom the galn-frequency
characteristic (see PFig. 3.3) and appearing in (3.80) wlll not de-
pend on time, while the amplitude of the natural motion in (3.79)
has a time- dependent, exponentially damping cofactor. Therefore,
after a time interval

t5%=? 7 ‘ (3.91)

the amplltude ratio of the natural and forced osclllatiocns will be
5% of the initial (at t = Q) ratio of the same amplitudes.
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Response to oscillating moment pulse /1

We take the input transform in the form of (3.49):; then the
coefficient X(B) needed to calculate natural motion from (3.61)
will be .

X (B)=IX (&) exp [j$ (B)]. (3.92)

where

(-4 2)

Wl =
-
X (B)l= ‘ el
{2 + 6D T2+ 2 (§— oT)— 12 4+ 4 (T — 21— 62} ° (3.93)

_ Im& (g
q)(p)_ar(_:tan%ﬂeu(g)
- 2T - YI=£
(V+I)arct3n (g2+m2)T2+25(E,__¢7‘)___1 - (3-9h)

The natural motion in transform notation will therefore be

_ RIX@ . exeli (@)
Q;Ia_.‘t(s)_"?..}[mlm s—f 4 (3-95)
which has the original
— kXl AN .
9 pat [t)= T Exp(—re?)sm [—;—P I—E’-}—!;J.(E}]. (3.96)

The forced motion can be determined from (3.58), which is
universal because the transfer function W(a) that appears in it
1s given in general form. Let us therefore rewrite this formula
using a specific transfer function. This glives

2kw exp (— o)
vl

Ifor )= X

, 0, &\ (@)W (@ (3.97)
Ximfeptenf 4545 E G e
For a vehicle with a transfer function having no damping, i.e.,
for § = 0, the expressions for the natural and forced motions /10
assume the forms
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‘ ‘7"# [t)=faQIX(jQ)| sin [9t+arc'1_:_an1'2i:_‘_;_§%]; ‘ ©(3.98)

Rw —
Tt f) = T ¢

XIm[exP (Jut) [(f + 3‘3;-!-%)' %Ju-wm} . (3.99)

T f20

3.1.C. General Formula For Determinatlon of the Response from Its
Transform ' S :

Multiplication of the input transform by the transfer function

of the vehicle yields a complicated response transform Y{s) in the
form of a rational-fraction function with multiple real and com-
plex roota: '

Y (8)e= U6 .
| Mg — 0" T [(s— 3y) (s3] (3.100)

If, in addition to the previously introduced notation

Y (s)=V (s)(s — )1+ (3.101)
we use o ‘
Flo=r ) [s—a) (s—a)] =+, (3.102)

where the pair of multiple binemlals ‘corresponding to the e-th
pole and its conjugate have been struck from the denominator of
the fraction in (3.100), the formula for the expansion of that
fraction by terms becomes :

e
VWi ¥o |, o
Y(3)=E[’! a‘lr a_n ];_’#‘-t—

(N
- . _'_ ' . . -
+ 2: 1;,,1[(_9._,_6_.)0 #ao_r]e-ok .
o Q! do oy/ 1PHis—a ;:Ea“*‘* (3.103)
Hence follows the formula for the origlnal:

=B (5 o))

4y

' +§{%ekp.(w) Im [eXP(JQJ)X
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-

L9 9N Y (@ Lo
X[(f—} da a‘{) 1 }“"‘11:”9&”‘ (3.104)

7—]2Qk

The same formula also contains terms pertaining to simple
(nonmultiple) poles, for which Py = 0 and r, = 0. We represent

these terms in the separate formula

Y —f—~
y_mnm.ﬂt[t)=(§ Y () exp (1) +

S e (Mt /2,) (3.105)
ek Q, Pt /) 2]

(%)

3.2. RESPONSE OF UNGUIDED AEROSPACE VEHICLE TO QUANTIZED MOMENT
INPUTS

3.2.A. Transforms of Quantized Input Dlsturbances

Level-guantized disturbances vary not continuously, but
stepwlse from one strength level to another. Time-quantized
disturbances remain at a constant level only for the duration of
a predétermined quantizing period TO’ so that the plot of the

function representing a time- and level-quantized input is stepped,
with a step width TO' The height of each step 1s determined

first of all by the shape of the envelope (modulating functilon).
The ordinates of the quantized function are egual to the en-
velope ordinates, which are reckoned in whole numbers of level-
quantizing steps with an excess on descending segments of the
envelope and a deficiency on its rising segments.

Figure 3.7a shows a function of the form /10
X {f)=evr, (M<C0). (3.106)

that has been quantilzed by level with a step 4x and in time with
a step TO.

In Fig. 3.7b, the level-quantizing step has been reduced so
greatly (Ax—s0), that the ordinates of the envelope and the guant-
ized function practically coincide at the times of time quantiza-
tion t=nTy(n=0, 1, 2... o).
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We shall call this function
the time-quantized form of the
original function and in-

10Ax
g troduce for it the quantiza-

tion symbol I, which will

8
g
4
2
7}

A
EtrLLCL be placed in front of the
*FF}14LL' L] functional notation for the
y o e Sh W 02 % 6 B W%t envelope. For Fig. 3.7b we
a) bJ have

Figure 3.7. Plots of Quantized

Disturbances. a) Disturbance ' T x®)=_1"e" (3.107a)

quantized in level and time; - '

b) disturbance gquantized in

time. - As is shown, for example,
in [26], the Laplace trans-
form of this quantized form is

1— g Tas

L {_,__l__ enf} :W[l— EECEIIE .

(3.107b)

Three cofactors, each of which has a specific role, must be dis-
tinghished in this formula.

The first cofactor

o

____l__....__, b ¥ RTo (1—8) - )
lh.ymm—ﬂ““jzle _ (3.108)

%= 7 . _
reflectsiasequence of pulses written in the form of the sum of | /105

terms of a decreasing geometrical progression.

The second cofactor
1~ TS a8 [t—T) ‘ (3.109) -

for the transform of the pulse sequence of (3.108) serves as a
transfer function containing two operations: a-one-time-step
shift and subtraction of the shlfted {delayed) sequence from the
basic sequence., Then one pulse of sequence (3.108) (each pulse)
yields a pair of pulses of equal amplitude exp(kTm) and unlike
signs with a one-step time shift.

H

1 . L
--s"-ﬁ'g...df ‘ (3.110)

i

The third cofactor

signifies the lntegration operation in which the puises are con-

81



verted into step functions.
The slgnal represented by (3.100), which 1s more complex than

(3.106), can also be converted to guantized form. If there are
no multiple poles in the transform of the signal, 1t follows from

(3.103) that
- -
X(s)== X () 1 X Ot Jor)
() ; § + R wy (8 = 7 — fuy) (3.111)
‘ (%)

After quantization to Fig. 3.7b, each elementary function

: > exp W op ] = exp [(115,'+ /) acquires the transform

=% 5y — S8 _

(3.107b), so that after time quantizatlon, the composite disturb-
ance (3.111) wlll be Laplace-transformed as a composite of
transforms (3.107b), l.e.,

—t

—_ X (20
LT x= I Z 1 —exp [To (0~ )} T
() :

/10

=l -
-’r-Z Im X (0 1 o) } Imew (=T (3.112)

wg [1=—=exp Ty (g 4 g = 5] §
(A}

The appearance of multiple roots in the 1input transform does not
change the structure of (3.112), but the operations of differen-
tlatlon with respect to a, n, and vy are added under the summa-
tlon sign according to (3.103).

Slnce the time~guantized step functions are constant on
the interwvals At = TO, 1t 18 sufficient to have information on

them at the points ¢=0, To 27¢, 8Ty, .... For thils purpose, we leave
only the first cofactor(3.108) in expression (3.107b) and sub-
stitute in 1t

EXPT‘,S:"er“':;z; (3. 113)
we then obtaln
—_—
El=ri - (3.114)

In exactly the same way, we obtain from (3.112) after the equi-

valent substltution
—f—
- 2 X ()
X[l Z & exp Tom+

)
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wha ) .
. I z X (ng 4 Jog) A
I 2 M o1z — exp 7o (g + Ju)] | (3.115)

The functions (3.14) and (3.115) are known as z~transforms. The
change from the transform of the continuous functions. X(s) to
the z-transform x[z] [26] is written in one of the following
forms: : . ‘ = :
It is easy to convert the z-transform in fraction form to a power
series in z by continuous division of the numerator of the frac-
tion by its denominator. Thus, we obtaln from (3.114)

elle—a)=14asthae et et (3.117)
Investigating the (k + 1)-th term of the serles and equating the
coefficient of z X to the valﬁé”df the exponential function
a_".—__—ekT.;n'
~where
=——=-—1'—lr'la,'

0.

we see that the series (3.117) characterizes the ordinates of .an
exponential envelope with exponent n at the points kTO.

. Information on the positioﬁ'of'each point in time 1s inherent
directly in the transform of‘theishifted pulse

2R B — BT, ' . (3.118)

Information on the envelope ordinates is to a certain degree
formalized, since it is given in the form of the pulse helght.
However, this formalization, which is inherent to the z-transform
method, is an intermediate methodologlcal device, since after the
integration of 1/s, which is mandatory both iIn the particular
formula (3.107b) and in the general formula (3.112), the height
(area} of the pulse 1s converted to a step-function ordinate and,
with consilderation of the difference shift, to the ordinate of
the next fixed segment of the quantized form. I s

The difference-shift operation expressed by (3.109) is
written in the z~form as . ‘ C

ORI L (3.119)

-3
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From the original pulse sequence

X |z] =ix{n’[‘o) F

R}

{3.120a)

it enables us to obtain the difference between the two shifted
sequences

Xidlel= Y (2 (kT)—x [k~ 1)T )} 2= L
R i)
< X[E)(I—z 1), (3.120b)
R
x(0) ;A;(ﬁ
%
de x(0) [ AN (7T,
/
1234567891 & . IERIE
[T ax(ior, SEIseEERae
’ l,g_lx\(gﬁfbf‘m) st _h%\\s\\\ SANNANRRN
Ax(T)

2) ZZa® G 8 0)
b)

Flgure 3.8. Intermediate Forms of
Representation of Time-Quantized
Input. a) Difference between shifted
pulse sequences; b) result of in-
tegration of the difference between
shifted pulse sequences.

The function (3.120b), denoted by X_{z], also represents the

pulse sequence. If its envelope is represented by the lower-
case letter with the same subscript as in (3.120), i.e., xu(!),

then that formula becomes

Xiild =Y, xi_ (AT o) z=F==
R}

=x(0) z"-]—i:.xl_| (kT ) 2", (3.120¢)

Real

Figure 3.8 shows the shifted-sequence difference for the
exponential envelope considered earlier in Fig. 3.7. The first
pulse in the sequence has, according to (3.120c), a height
equal to the initial value of the function x(0), and the pulses
that follow conform in magnitude and sign to the inecrements of
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the function. The increments are negative for the type of de-
creasing function considered here,

If the shifted-sequence difference 1s integrated, each
Pulse is transformed into a shifted step function as shown in. /109
Fig. 3.8b, where the first positive step x{0)1(t) is shaded in
one direction and the negative steps Ax(kTy) 1 {{—kTy) are shaded

In the other direction and transposed to the top of the figure
S0 that subtraction will be more convenient. Superposition of
shading cancels the corresponding area, and it is easily seen
that the part of the area with positive shading that remains
in Fig. 3.8 coincides exactly wilth the function _ | e¥

shown in Fig. 3.7.

An analytical expression for the resulting function is
€asily derived from (3.120c¢) by integration:

, ,
Jm4wm=_ﬁwm=xWHmf

S ' 12
+ 3 ax (kT )L —kT,). (3.121)

LLB!

For quantized (stepped) inputs, therefore, it 1s necessary to
convert from functional description of the envelope to descrip-
tlon of the disturbance in sequence form; calculation of the
response is then quite simple, as willl be shown below.

3.2.B. Strongly Damped Motion with Quantized Disturbances

Here we consider the case in which the transfer function of
the vehicle is given by (2.83). Since the quantized input must
be assigned in the form X_(z] the function of form (2.83)

must be bombined with the integrating-element transfer function
{3.110); then . ‘

_ k/T2
1VM§-33_§0“_¢ﬂ (3.122)

will contain the three poles g, B2, Bs(Ba=0).

It 1s separated into three terms
3 e S

WoB)_ & 1 ‘

0- ) ) s-_ﬂk T2 [Bl{ﬂl"‘ﬁ:’)(s——ﬂi)-}“ ‘ . /110
B P _ -,
+3z@?~ﬁ06—ﬂﬂ*-3§ﬂ]' e (3.123)"



In the z-transform method
[26] with consideration of

, —
o

[ 2% { ‘ % quantized disturbances, the
I - | system response y . is also to
| [ | | be studied in the form of a
| | ; ] sequence of pulses with en-
Q0T T, 27, | 97, 47 -t velope~height modulation y(t),
07 | ) and it is therefore necessary
(3"3?:&”9 -ty [(k-x)r,,]z"*, to convert from the transfer
K=123... funtction (3.123) to the Z-

form. For systems with iner-
tial elements (with memory),
however, impression of a
quantized input triggers a
response that has a more com-
plex form than steps in the
intervals between quantiza-
tion times. Thus, along with
information on the output quantity at the times of Input-signal
quantization, 1t 1s necessary to have data on the response at
intermediate times.

Figure 3.9. Pulse Sequence.

————— } Reference Pulses at Tlmes
of input quantization;

vehicle response interrogation
pulses with shift 1 — k.

For thils purpose, we introduce a new system of pulses that
also follow one another at a repetition interval TO but are

shifted by xT, from the signal-quantization points,

0

The system of pulses introduced here involves no physical
changes in the conditions of disturbance transformation at the
times (k—x)Ty (k=1,2...00), but is merely part of the procedure for

acquisition of data on the response at these times; it is there-
fore known as the interregation-pulse system.

Pigure 3.9 shows the positions of the interrogation pulses
relative teo the pulses produced by guantization of the input
signal. As we see from the figure, the shift kTy 1s reckeoned /1

from the end of the particular quantization interval in the di-
rection toward 1ts beginning.

Let us examine of the terms in (3.123):

-_—h

. J—.
W ey (5) = —‘L"’;i-—w (Be) exp Byt (3.124)

and apply the z-transformation to it, using the interrogation-
pulse system as the base for the transformation. We then obtain

exp(l—) Ty S expar, (B—s)=
f=1

_zexp(l—=)Tp B, ] (_3-125)

o 1 — er" (Bk_s)
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The series under the summation sign is preserved in the left
member of (3.125), while the right part of the same formula
glves the sum of the series, which differs from the result pre-
sented in (3.109) only in the scale and in the positions of the
reading times (the shift by KTO). It 1s therefore easy to con-

vert from (3.125) to a z-transform that depends on the argument
z and the parameter x and is known as the modified z-transform:

| N ) o
W [z, =W, (5y) ZZRCR, . (3.126)
——fpa
Wanlz, ml=W, (6) SZETT (3.127)
(S

Formulas (3.136) and (3.127) indicate two ways In which the
interrogation-pulse shift can be reckoned: from the end of the
time step, as indicated in Fig. 3.9, or from the beginning of
the step, for which the new symbol m = 1 — Kk, which has been
used by various authors [11], [24], and others, is introduced.

The modified combined transfer function 1s written as fol=
lows in the z-form with consideration of (3.127):

: 3 -
e e N W (B exp [~ %) Toyle -
| Wo[z”‘l ; z ~— exp Tobs (3'128)

or symbolically : ” /112
: WLz, wfosis (W, (8)] == " [Wals) ‘ (3.129)
After determination of the modified combined transfer fﬁnction

in the z-form, the conditions of input transfer reduce to multl-
plication of the corresponding z-fransforms:

Yo A=Wle A XSl =W e A X 255, (3.130)

z

where Y|z ¥ 1s the modified response z-transform, ‘lvok,q. is

the modified combined transfer functlon of the vehlcle 1n the z-

form, and X,_,’[zlm)([z]"'“ 1s the sequence difference that cor-
.2 .

responds te the guantized input.

. The result Y[z, «] tekes the form of a rational fraction in
which the coefficlents of the polynomlal in z that appear 1n the
numerator are functions of the lead k.

Pixing ¥k at the successive values 1, 0.9, 0.8, ..., 0.1, we
can obtailn the ordinary z-transforms for each of these values,
so that conversion to the original reduces to the contlnuous
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division indicated in (3.117).

Let us carry through the
calculation of the response for
a specific vehiecle transfer func-
tion (3.122), which corresponds

' to the transfer function (3.123)
3 with the pole values of (2.82).
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In this case, the coef-

Figure 3.10. Time Quantiza- ficients of the expansion are

tion of Disturbance with En-
velope in the Form of a

[P g

Linear Funetion. w ——r
o) 22— iy @B D)
W, (8= ¢ W,
)=~ ey V=W (O=z

Substituting them 1nto (3.128), we obtain

oo [—0-0¢ 2]

W Z, hl=p% )=
zexp%(l-x) VEee=1 /1
X —

7 A
z-—exp—Tg (~e+yVE=])

Zexp [%(ﬂ--—- HYE—=]

_ + =
z——exp%(—&—-— Ye—1) — (3.131)

Let us consider an input assigned in the form shown in Fig.
3.10, where the envelope of the steps 1s a linear function

x(t)=t, (3.132a)

and l1ts Laplace transform is

oo Gas

The transform on the right in (3.132b) was obtained by the A-
transform method, which permits a similar conversion to the z-
transform: '

. _@__'___fm__‘__ - TﬂZ '
X[z]_[dn z—expnT, ]11_0 {z—N2 (3.133)

Let us now use (3.120b) to determine the zZ-transform of the gif-
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ference between the shifted sequences 7 , ' /114

e

X[__il.é.’]:: 7o (3-l3u)

&1

and multiply it by the modified combined transfer funetion (3.131);
this gives

25T
VI = s —va=n <
v Aty B
=-exp—fr°—,(—-e+l/e2-i)
_ ‘ B(x) kzTy
"‘“"P‘Tf(“e‘"‘/ﬁ] (e (3.135a)
where
A—exp{(t =) 2 (—t4VE=D)], (3.135b)
B(“)“"—*“EXP[(I—"_“)%.Q("E—VE’!#I)J, _ (3;135(:)

The last term in (3.135a) is proportional to the input disturbance
(3.133): . ]

kg2
Pl | (3.136)

i.e., the vehicle response has a component that repeats the shape
of the quantized (with linearly inereasingenvelope) input on a
scale determined by the coefficient k. The remaining terms in
(3.135a) reflect the dynamic response lag wilth respect to the
disturbance that caused the response.

It. 1s convenient to separate the filrst terms in the right—
‘hand side of (3.135a) into forced (steady) and natural (tran-
sient, damping) components.

The forced component will contain only the poles of the
input disturbance z = 1 and 1s now separated by the algebrailc
methods used previously, &€.g., in (3.4) — methods that are na-
turally valid both for the reglon of the argument s and feor z on
conversion to the proper fraction Y [z] with subsequent con-

sideration of the initial poles y(0)z0. Let us write the
forced component separately:

—

Tall, x]__ AT, A
,x]__ kg PR T —
:—1. - z—lx { 2(59—-1—51"‘&2—l)[l—-exp-‘—;g-(_e_]’gz_l)}

B(»)

21— VT 1= cxp = (=6 ¥ E=T)| l
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The operators (2-functilons) in the left and right members of
(3.137) represent a sequence of interrogation pulses that 1is
constant in all time steps for a flxed k, since

W= (3.138
P —%z ﬂ-]exp = 1T's). )

The function “?Tx,q, which 18 determined from A(k} and B(k),

characterizes the change 1in pulse helght within a quantilzation
v

interval. It 1s .sufficlent to calculate Yil, s} once for ap-

plication to each time step.

The natural component 1s separated from (3.135a) in the
form

[ 2-"‘) [23-"'] =
r— 2, + r— 2, Y nat [2) 4]=
- p kTQA ("-) —r
zFxp—(-eH 52—1}—l][z—wiﬁ'f*WVﬁi—‘]
AToB (x)

m2[e‘=p-f—&—1f’e=—1)-—1] [z—exp-gﬂ(—e_y’g'f:f)]‘ (3.139)

The functions A(x) and B(x)}, which determine the relative form of
the response within the gquantization interval for each tlime step,
can be calculated for each value of . However, the saale will
be different for each time step, and will be determined both by
the constant cofectors in (3.137) and by the type of damping of
the exponential components represented by the operator part of
formula (3.139).

Thus, we obtain for the m-th time step

- ATenp {‘-:;l'( wmd g | B TTHA (W)
Y nat (BT4, #) e — 7 -
.Zi.ctp—f-( i PEI~ 1)"'1]

A‘ToBXP%.@(—E-mVe?TI)
- - . (3.140)
QI_GXP'?“E"(—-E*V?:-T)—l] | .

Instead of calculatlng the individual components in the response,

g0

™



we can, as was explained above, combine all terms of (3.135)
into a common fraction of the form ‘

V[z, ‘K]: : by {x) 24*;[13(1.) 23
(z—lplz_ﬂﬂpﬁg(_d__vﬁtrn}x
+ by (%) 22+ by (») 2 + bg (»)

X [z-——-exp%?—(——E—V@:_f)]—

_bg(m) 2t L. A (R} 2 A B (n)
2V 4 aged 4 a»2?2 - ayz 4 ap

(3.141)

and carry out continucus division of the numerator by the deno-
minator for fixed values of k, when all coefficients are assigned
as numbers; then the coefficients of z~¥X will be complete values
of the entire response in the particular time step t = kTO and

at the fixed value k = Kl.

The cases considered above have been cases of real negative
vehicle transfer function poles. The appearance of a positive
pele wlll not affect the procedure of calculating the response
to a quantized input, but it will not be admissible to neglect
the natural-motion component in this case, the more so since it
will come to dominate the over-all response with the passage of
time. '

3.2.C, Weakly Damped Motion with Quantized Inputs J117

As we noted in Sec. 3.1.B, weakly damped osclllatory motions’
arise when the vehicle transfer function has complex poles.

Taking transfer functicn (2.81) with the poles (2.82) as a
base and taking account of the integrating part in the representa-
tion (3.107b) of the quantized input, we arrive at a combined
transfer function of the form

It . RT—2 o T2
o (s) S(s—P)(s—2n sls—8p2 ° (3.142)

It can be separated into components for the poles Bi=0, B2=8, Ba=p*,
and we do so with (3.122); we determine the coefficiente of the

expansion '
. i . o &

oy T2 _
W)= ag* _Tziﬂiz

=W (N)=k;
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and write the corresponding terms

* LA i
Vols)= [WI?STuIms(s—_g)]' (3.143)

Substitution of the values of the poles (B = ¢ + Jjw) gives
1

—p] Lt —t+iV1—¢
WO(S)_k Tl I__EZ hﬂ £ j]rlTe—z ¢ (3.11‘”)
S+

We make the transition to the modified z-form using formula
(3.228) in the form

z z
W lz, “lzk{z—z TyTEE X

(—t— i VT<&exp [(1—-7-)1‘7%(--5+ij1—' ez)}

X Im
Z—expfrﬁ(——e-i-j]/r—'“éi) (3.145)

We separate the imaginary part of the fraction in (3.145) by
eliminating the complexity from the denominator; this yields

l by(n)z 4 by ()
W fe, 6= k2 =1 ;‘(}»ﬁ(‘ﬂ—] (3.146)
{or ‘ .
where ao—exp(-—Fo- ); (3.147a)
a,= —2 exp (-—-»T—;E)cos T Vi-¢, (3.1470)
0
‘ exp[(x——?)zg'é}
b ("’)z— VI—E‘E ><
X sin ["T"VI Ez—{—arccosE] (3.147c)
exp[(x—l)%&]
bl(x)z }/—1—-__-—&2 X
Xsin [(:—I)TOTVI_- EQ-—arccosE]_ (3alu7d)

After reducing the two fractions in (3.145) to .2 common deno-
minator, we have

W, —p (1481 ()] 22+ [ (x) — &y (x)+a3] 24-ap— by (v)
t7, =] == (z— 1) (2 + @z +ag ' (3.148)
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For the known z-transform of the quantized input X[z], the response
of the vehicle will be determined as follows in medified form
according to (3.130): .

Y jz, ] =kz—1) X [] X

{14 By (x)] 224 [Bp (») =6, () + 3] 2 +ap— by (*)
224 a2 4 ap ) (3'1)-;9)

X

Since the transform X[z] is assumed tc be given inthe formof a
rational fraction, the entire prcduct in the right member of
(3.149) will reduce to a rational (more complex) fraction.

Continuous division of the numerator of this fractien by © /119

its denominator yilelds a representation of the over-all response
at the times of interrogation ¢{=(a—x)T,.

Preliminary determination of the forced part of the motion,
whose z-transform contains the poles of the input disturbance,
permits more rapid investigation of precisely this part of the
resetion if it 1is sufficient to have an inference only as to the
repid damping of the natural motion.

Table IV.1l gives general expressions for the guantized-input
response. The notaticn used in the sclutions is that of the z-
transform. To convert to the time region, 1t is sufflcient,
after substitution of numerical values of all the coefficients
for a fixed x, to carry cut contlnuocus division of the numerator

of the fraction by its denominator to obtain the power series

¥y (kT *—)Z"* o N, y (T, )3t —Tokl, (3.150)

k] Rl

whose coefficients indicate the response in sampled form.

3.3. STRUCTURE OF THE VEHICLE'S ANGULAR-MOTION LOOP. CONSIDERA-
TION OF CONTROL CCOUPLINGS

3.3.A. Structure of Ungulded Aerospace Vehicle

The structural diagram of the vehicle gives a graphical re-
presentation of its transfer propertles and makes 1t easier, by
comparison with the analytical descriptlon in the form of the
transfer functions discussed in Sees. 3.1 and 3.2, to follow the
dependence of the dynamic characteristics on the existing coupl-
ings in the uncontrolled vehicle and supplementary couplings
that are introduced via the controls and autopilot.

We shall take Eq. (2.78) as a basis for the angular-motion
structural diagram of the. ungulded vehicle, rewriting it in the
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form

ay8? $(s) 42,8 2 (8)+agb{s)= M](s). (3.151)%
We present this equation in the conditionally solved form /
B($) = —— [M (s)— a,b (s)— a,% (s)]. (3.152)
0232

The structural diagram of Fig. 3.11 i1s obtained from the condition-
al solution.

The first term in the

~, z brackets in (3.152) arrives
a,52y(s) - 1 at the adder via the forward
M(s) | - = Vs B(s) loop, while the other two
Yol e 3 %- terms come in on the feedback
/ e lines. We can therefore sim-
= 2 plify the adder equation
1

@S2 B(S) =M (8)—a,b(s)— a,s0(s),
Figure 3.11. Structural Diagram : ()= asb(5) - a,9(s)
of Vehicle's Angular-Motion (3.153)

Loop. which is fully equivalent to

the original equations
(3.151) and (3.152).

The transfer function between the input M(s) and the output
¥(s) can be calculated directly from the structural diagram:

— o (s)
W(S)'-1+01(S]+c2(5)+... ’ (3.154)

where H(s) is the product of all transfer functions of blocks in
the forward loop and ci(s), cy(s).,. are the products of the transfer

functions of all blocks in the negative feedback loops. In this
case, we obtain

W(s)= 2g5? - 1 . (3.155)
14 a02 + ar aps? - a5 - ag
aas ags

-* - =
The ccefflcients aqs 8y 33 are determined from the second equatio:

of system (2.50), where a, = 1.0, a; = nw, ag = g, and M is the
entire right side.
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Figure 3.12., Structural Dlagrams of
Angular Motion After Introduction of
Peedbacks Through Automatlc Pllot.

a) Structural diagram of ungulded
vehicle; b) dilrect negative feedback
through automatic pilot; c¢) ldeasllzed
automatic pilot in the form of a
forcing element; d) real autopllot.

If the vehlcle has weakly developed tallplanes and a; = 0, /121
the ca(s) loop is opened and the new transfer functlon assumes

the form - . )

. M) o ees? 1 @
W(s) 14 e1{s) | 4 Qg 053 + ag 8% 4 Q2 ) (3.156)
aos? :

~If, in sddition, there 1s no aerodynamic moment proportional
to the lateral angle of slip, feedback loop cl(s) of the struc-

tural disgram is also broken, and the transfer functlon is even
further simplifiled:

W (s)=T (8)m= ——- . (3.157)

ags3

The structural diagram for the transfer function written 1n the /122
standard form (2.81) 1s given in Fig. 3.12. The inclusion of (===
element 1/5 1n loop ¢, in addition to those in Fig. 3.1l 1s

¢compensated by the inverse element s in the feedback block, s0
that the properties of the loop remain unchanged.
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3.3.B, Consideration of Couﬁling Through Analog Autopilot

Structurally, the automatic pilot is represented by a block
in the negative feedback loop between the output ${s) and the
input M(s) of the vehicle's dynamic diagram. This coupling is
indicated on Fig. 3.12b, where, in a first approximation, we have
considered only the gain of the autopilot.

To determine the new closed-system transfer function, de-
noted by @1(5), we can use the general formula (3.154), adding

k/TESE5 which gives

& third loop c; = kg o
: £
7252
O (s)= I szg T =T2s2+‘2&TsZ-1+kk' . (3.158)
L+ + 35 b f.h N

T2 ' Ts T252
We bring this transfer function to the standard form

e
D, (§)== 1 + kR
1(6) T2, AT =
5
[+ kegy 1+kkf,1,s+1

= ad ‘
T3% + 26,58+ 1 ° (3.159)

We note first of all that application of the coupling —kf p re-

sulted in a favorable change in the static¢ ratio between the
disturbing moment and the deviation in angle of yaw:

'k‘=Ai:jy:' k. (3.160)
L4 Rk p

When kkf B > 1, we have for all practlical purposes kl 2 l/kf b ?

i.e., this static ratio is the reciprocal in magnitude and di-
mensions of the automatic-pilot gain. e

We also see from (3.159) that the relatlive time constant

T
and the relative damping factor
S S
=T (3.162)

have changed.
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However,. the absolute damping factor o = £/T = 53/T3,has

remaingd unchanged.
Thé new natural frequency of the oscillations is
1 VT3 1 v
91"’-"7'.7 ‘-/1 '-"cf:";;:' VI—E L kb=

-..\-jl ] =Q ]//1 '-L"f_'ti‘ - (3.163)

i.e., the frequency increases with increaéing kf - We'céﬁ

provide a physical explanation for this effect by reference to
the structural diagram. Thus, if we consider not the loop 3

(see Fig. 3.12b), but the analogous. loop in Flg. 3.11, we see that
the two direct negative feedbacks —aO'and —kf'b will be applied

at the same points of the diagram, which is equivalent to a
single common direct feedback
ap=ay k. (3.164)

The coefficient a, can be increased by changihg the aero-

dynamic configuration of the vehicle, 1.e., by developlng, for
example, the tallplanes. The same coefficient aé in the pre-

sence of the automatic pilot can be increased according to
(3.164) by providing only an increase in the feedback coefficient
af b The designer should always consider the two possibilities.

In many cases, the automatic pllot compensates for statlc aero-
dynamic instability (ao < 0) of the vehlcle.

~ Additional couplings in the automatic pilot function simi-
larly-in.determination of the vehicle's degree of damping. Pig-
ure 3.12¢ shows the improved coupling through the autopilot when,
in addition to the coefficient_kf b2 it incorporates a concur-

rentApérgglel branch with signal differentiation: Tp s, which
is known as a forcing element. If loop ¢j of Fig. 3.11 is ex-

panded, it is found that the feedback a,s 1s applied at the

game points of the vehicle structural diagram &s the forcing
element in the automatic pilot in Fig. 3.12c. We may therefore
add the transfer constants for the two couplings a,s and Tf pSs

and the new coefficient a'y, which determines the degree of
damping, will be
B=a,+ Ty (3.165)

Consequently, the degree of damping can be increased either by
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design modification of the vehicle's aerodynamic properties or by
introducling a forcing loop into the autopilost.

When the true broperties are
consldered, however, the automa-

T@; ...... FW tle-pilot foreing circuit takes
'~—-'§%—~*w (jw) | 2 a2 somewhat more complex form than
f‘ i ¢ that in the 1dealized example
Py} 1 U Caliw) considered above because of dy-
[ e h_J namic errors in the elements of
Jmm—b e YWy the autometic pilot.
Figure 3.13. Structursl Dta- The frequency character-
gram of Vehicle Loop Closed istlics correspond to those shown
by Automatic Pllot with No- in Flgs., 3.2 and 3.3 for certain
tation for Complex Transfer types of vehicles. Introduction
Functions Used in Applica- of an automatic pillot distorts
tion of Closing Nomogram. the frequency characteristics,

‘but the system's new frequency

characteristics can be deter-~
mined from those of the vehicle with the aid of a standard
"closing nomogram” constructed on the basis of the formuls

it} (jm):——-—-—-—-_li(g'?jw) . ( 3. 166)

For application of the closing nomogram, the structursl
diagramef the guided vehicle must be brought to the form shown in
Fig. 3.13, where WVE(Jw) 1s the known gain-phase freguency

characteristic (GPC) of the vehicle and WAP(Jw) is the GPC of
the automatic pilot.

]
The structural diagram must first be used to find the @GprC
of the entire closed loop:

Con (fu)=W pp (Ju) W g (), (3.167)

Here the negative-~feedback symbol is isolated in & separate bloek /1:
as shown in Fig. 3.13, and is not included in CBl(Jw)' Multi-

plication of the freguency characteristics becomes an elementary
operatlion after conversion to the logarithmlic gain and phase
frequency characteristices — the LGC and LPC — and reduces to
addition of the gain in decibels and the phase angle in degrees,

The closing nomogram is then used to find the closed-system
GPC ¢31(Jw) from the c¢haracteristic C3l(Jw>' Between points 1

and 2 (see Filg. 3.13), the sought GPC is determined from the
characteristic obtained from the nomogram by simple conversion:
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Q.’Q (jm): M‘L’_. .

which reduces to subtraction of the gains and phases in logarith-
mic coordinates.

Figure 3.14 shows the closing nomogram: its input coordinates
are arg[Cy(jo)] (phase) and 20lgiCu(jm)! (amplitude), which form a

uniform rectilinear coordinate grid. The output values aropy (jo)l

and 20lg|wWytjo)| are taken from the curvilinear grid of isolines.

Interpolation is carried out when the input points fall into the
spaces between isolines.

If [Cs(jo)|< 1, the feedback via loop 031 is weak. This re-

gion is represented by the lower half of the nomogram, where
negative values of the gain |[Ci;}d are plotted. We see from

the figure that the amplitude and phase lines of the rectilinear
input grid approach the output-coordinate isolines of the cor- Ay
responding numeration at the bottom of the nomogram. As a re-

sult, the closed-system frequency characteristics approach the
characteristics of the complete open loop. With weak coupling
through the automatic-pilot loop, conversion of the character-

istics becomes elementary:

By (joy= 280 Calfo)
a{/w) W._AP Gy Wpp () VE (/). (3.169)

If. [Ca(jeo[>1, the feedback in loop C3l ls strong and, ac-~
cording to (3.167), the transfer function ®3l(s) approaches
unity as a limit, i.e.,

oy (fo)=1;
201g| Dy (ju)f==0; } (3.170)
arg [y, ( jo)] =0. " (3.171)

In fact, at an open-loop galn of 30 gB at the top of the
nomogram, the closed~system amplitude variles near zero in the
range 0.3 4B, and only within these limits does it depend on
the 1nput phase. The closed-system phase angle does not exceed
1°, i.e., 1t 1s also near zerao for practical purposes.

In this case it follows from (3.169)-(3.171) that

Do (fo) == W. (3.172)
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i.e., the properties of the vehiele change substantially in the-
presence of strong feedback in the automatic~pilot loop, and

the frequency characteristic of the entire closed system between
points 1 and 2 becomes similar to the inverted frequency charac-
teristic of the automatic pilot itself.

3.3.C. Consideration of Coupling Through Digital Automatic Pilot

i Figure 3.15 shows the angular-control structural dlagram of
a vehicle when a digital computer is used in the automatic-pilot
loop. The feedback includes, in addition to the computer, the
same analog elements as before: the gyroscope, which measures Y,
and the control-actuator servo, which develops Mcon' Since it /128

———

is now possible to solve complex control problems in such a- - ..
system, the same figure indicates, in addition to the disturb-
ing input Mdist(s), the programmed input wpr(s), whieh might be

a predetermined maneuver, ete. FEach input goes to its own adder
(1, 2). The output signal of adder 2 (after the gyroscope and
programmer) contains an estimate of the angular imbalance EMw(S)

due to the two inputs and given in analog form. Converter

AC then ‘converts the imbalance from analog to discrete form
(digiltal code) for input into the computer with a time-quantiz-
ing interval TO long enceugh so that by the time of arrival of

the next number characterizing the ordinate EM¢ the computer

will already have processed the information of the preceding
time step in accordance with 1ts algorithm., After conversion
to discrete form (digital code) by the computer, the signal is

convertéd by converter Sh to the analog stepped form, in which
it is used to control the actuator drive that generates the
controlling moment.

To avold the introduction of additional notation for the
digital code, it can be assumed as a convention that the com-
puter algorithm transforms the input pulse sequence Efz] into
the output pulse sequence F[z]. Then 1t 1s sufficlent to con-
vert from the analog form E(s) to the z-form E[z] to reflect
the input into the computer of only one imbalance value during
the entire interval T0 (namely, the value of E at the beginning

of the interval), and to obtailn the step function from the z-
function Flz] 1t is sufficlent to separate the shifted-sequence
difference F 2] and then to integrate 1it.

If the computer algorithm is linear, the relation between
the z-forms E[z] and F[z] is given by the simple formula
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A3

Figure 3.15. Structural Diagram of Vehicle
with Digital Automatic Pilot. a) Analog-
Digital Structure; b) z-structure; c)
structural transformation of disturbing
moment to disturbance in angle of yaw; d)
duplication of disturbance in yaw angle
when adder i1s moved across branch point on
signal path.

The signal-transmision conditions are illustrated in this
form in Fig. 3.15b, 1.e., by the z-structure of the system. We
note that the computer algorithm includes:

~ the basic formula of the linear transformation that re-
sults 1In a rational-fraction function of Z3

— & one-time-step delay (z — 1) necesitated by the computer's
discrete output of the sclutions;

— the scale coefficients necessary to mateh the transfer /12¢
properties of all blocks of the structure. '
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In the z-structure, input disturbances must alsc be gpecified
in the z=form. Since the programmed lnput wpr is applied to adder

2, after which only the informatlion at the time-quantization
points is uded in the signals, thls input is translated directly

intoe the z~form
bpal 2] =28 [ (S]] (3.174)

To econvert the input Mdist(s) similarly, 1t 1s first necessary to

trensfer it to adder 2. For this transfer, according to the
structural rules, the input transform must be multiplied by the
transfer functions of all elements between adders 1 and 2 in
Fig. 3.15a, which glves

G (8) =Mz, (5) Wom (5). (3.175)

The dimenalens of the disturbance will then agree with those of
the second term on the adder, so that after transfer of the dis-
turbing moment onto the angle line 1t willl be identified as an
angle disturbance y,4.¢ equivalent to the moment disturbance as

indicated in Fig. 3.15, ¢ and d.

On transfer of the disturbance wdist aeross junction 3,

two dlsturbances are formed in accordance with the transfer-
equivalence rules; one outside the loop and another within the
loop.

For the disturbance within the loop, —¥44.¢(8), Which 1s
equivalent to Mdist’ we can convert to the z-form:

Paw [2] =0 (M an (5) Wi (5)]. (3.176)

Wwe then obtain the total disturbance applied to adder 2 in the
form

X (2l =4 glel — b ml2] (3.177)

For the disturbance +y (s) outside the loop, the response
dlst

is analyzed separately after determination of the closed-loop
operating conditlions.

_ Continuing to trace the closed loop on Flg. 3.15b, we go
from the computer functlon to the corresponding difference bet-
ween the shifted pulse sequences in fthe form ‘

FLH¢F=1;"'F[ﬂ- (3.178). /130

This shifted pulse sequence difference excltes all analog ele~
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ments of the dlagram that are combined with the integrating
element 1/S8, which participates in the shaping of the stepped
signal.

To obtain F_(s), 1t is necessary to take account not only of

the total input X[z], but also of the closing conditions. In
this case, the loop 1is closed by analog elements with the overall
transfer function

Cal8)=— Wep (s) W (5). (3.179)

Thelr response has a complex analog form, but when information is
taken for the computer at discrete polnts, the data on the pro-
perties of the combined analog part are needed only in the form
of the ordinary z-transform:

Coldl =13 | W (&) Wep ()] (3.180)

It is now eacy to obtain F_{z] from X[z], since the z-structure

contracts in the same way as the ordinary structural diagram,
giving

Waiclz] z—:,i
Filz]=

(3.181)

z—1"
¥

L+ Col2] Wp o]

After determination of the pulse sequence at the input of the
analog elements in the closed system, it becomes possible to
obtain the response at the output of these elements as the
meodified z-transform. For this purpese, we find the modified
combined transfer function in the z-form for the combined
analog part:

Coler =i |- Wep(5) Wyn(s)|. (3.182)

Then the response wx caused by I1nput x is determined ffom

AW aLgle)e— b X (s /131
bz, =202 PALelel e — 1 X [2) (3.183)

z+ o5(z) Wy g [2)(z—1)

To obtain the over-all response in angle of yaw, it 1is necessary,
as Indlcated in the right side of Fig. 3.15b, to add the com-
ponents: wx given in the z-form and wdist given in the form of

the Laplace transform.

The first method of obtaining the sum consists in applica-
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tion of the inverse transformations according to the formula

Al

{

n Gk — ) T]=L {OGa(sh e amnr, 3 {Ue 2, 7]} (3.184)

3

Where L-l is the inverse Laplace transform and 71 1s the inverse
z-transform,

) To rgconcile,the two terms in (3.184), only the values sam-
pled at the points ¢=(k—=)7, are used in the continuous function
obpained after the inverse Laplace transformation.

Herel the sampling interval can be reduced by varying k 1in

smgll inqrements.

\ ‘ o
The second method of obtaining the sum consists in conver-
sion to the modified z-transforms for both terms:

9fz, d]=0, [z, x]+ q"ﬂigt[za"l- (3.185)
In this case, in addition to the previously obtained z-transform
wx[Z,\K], it is necessary to find the modified z-transform wdist

[z, Kj, ¢f the disturbance. Then, after adding in accordance
with {3.185), we obtain the modified z-transform Y[z, «] in the
form of a common fraction, to which the inverse z-transformation
(continuous division) must be applied.

Let us now consider separately the response wM due solely

to the moment disturbance, writing it in the modified z-form
by [2, 7] = 22 [Wayp (5) M gse(S)] —

o eple. 1 Wajglzl{z—1)
2 4 olz]lWaralzliz—1)

(3.186)

The first term in (3.186) represents the response of the unguided
vehicle to a disturbance in moment, and the second ferm re-
presents the compensatlion of the deviation by the control loop.

We shall retain the modified z-form (3.186) for calcula= /132
tions of the process at all points, but we shall also write
the ordinary z-transform of the response in the form '

I eol2} Wy elzl(z—1) . ‘ -
tulel={1— e e N E() Mae ),
or ‘ 7 ]
bulel = 2V atst 7] o [glel, (3.187)

Tz el Wagglzl(z—1)
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where Qg[z] 1s the transfer function of the closed-system error
in the z-form.

It 1s easlly seen that the dlsturbance is compensa%ed by an
increase in the gain of the elements forming Co[zJ, or, for the
most part by an increase in the efficiency of the eontrols,

4

Let a strong feedback ~—a;> —oco exist in the vehiéle dynamic

structure shown in Fig. 3.11; then the transfer functibn of the
part of the diagram covered by this feedback can be replaced by
the gain

=  (3.188)

Assume also that the second feedback 1s very weak, &y * 03
then the over-all transfer function of the vehicle will be

Ly (3.189)

Wyg ==L
VE 8

Let us use this transfer function in the structure of Fig. 3.15a,
assuming as an approximation that the control actuater drive 1s
inertialess and only changes the gain kl to the value k; then

the over-all transfer function of the combined analog part of the
dilagram will be defined as

Co(s)=. (3.190)
From this we convert te the z-form

Cole) =Tz (3.191)
(e—1)2

We shall assume & un

unit computer algorithm, introducing only the
one-step delay of solutio

n readout, i.e.,

Warcl2]=2"1, (3.192)

We multiply all transfer functlions that appear in the closed
loop of the simplified digital system under consideration:

kT,
z(z—l)' (3-193)

S Cole] Wasg e} =

and determine the closed-system transfer function
¥T,

Z(Z—]) — kTO (3c194)
D [Z]= ) ¥To == 22—Z+kTo .
+z(z—1)
i
o<+ (3.195)
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the fraction of (3.194) can be broken up into two real terms of
the form

AT,
L) [z]::-_- 9 ———— ]
: ( 14+ V1—air, )( 1V 1— 44T, )
Lo
2 2
Ty ( 1 _
Y1 —4Ty z___l___l_m
R
_ 1
,__;;_,__é_.ﬁ:mo— ) (3.196)
We put
Q== I""’/l;%T“ =exp N7 s
—_ (3.197)
b= 1"‘[;"%7" ==exp N7,
where
.. 1+ VT—akTy 3
n“_lh]“ 5 =
= In __.__2 = —
To V+ Vi—akl, ¢ { (3.198)
] 2
%—_ﬂJHL;w—mm =%
We then obtaln
—1
0o} = | 2
k‘[zl Vi—#ly | z—exp(— o) |
—_ z ] (3.199)
z—-exp(-—-—chO) ’

i.e., according to (3.199), the weighting functlon of this closed
system at the times of time quantization ({=kTq k=),2, 3..) passes
through the same points as the sum of the two exponentials, which
are one time increment apart:
- kT,
W) =—et— fexp [—o, (t—T,)] —
(0= texp [ =t T) (3.200)
- —exp[—o, (f—T,)]}.

Ir
-%«ikT<:L (3.201)
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then the funetion (3.194) has complex poles whose absolute values
are smaller than unity, and it can be presented in the form

D, [2]=
- #Ty .
i 1 1 b e
(p_ifhj?ry%mb—1)(a—?;+17;yqﬂb—1)
T, - 1 _ (3.202a)
HTy—1 1 — .202a
V &ty 2—7;U+jV%n—dJ
We set
1 . ————
~ (VAT —T)=
= 1 . t .
=V U(W+JV1_M)=EXP(“n+JQ)Toi (3.202b)
where -—f=— InkT, and
2T,
L AR 7 ¥
Q_.TD arctanVMe:ro—l_.?;-. (3.202¢)
Then
q] 2] == 2)’(’T0 l. 1
2l ] Varm,—1 mz~exp(—1]+jg)ro' (3.2024)

We see from (3.202d) that the weighting function of the
digital closed system with condition (3.201) passes through the
same polnts at the times of time quantization as do the damping
harmonic psecillations represented by the formuls

¥ )=t exp [~ N(f— T ) sin [2(—T). (3.202e)
If
ko> 1, (3.203a)

we obtain by analogy with the case of (3.201)

wa[f)ﬂ-p%‘{-_—-l-exm(f—?})sin [2(E=T), (3.203b)




i.e., the weighting function contains diverging harmonic oscilla-
tions. Above we drew attention to the fact that the actual
welghting functions agree with the calculatedfunctionswl, Wos w3

only at the points of time guantization.

Hewever, 1t is evident even from the reference points obtaln-
ed that closing of the negative feedback with the digital elements

and a supercritical gailn k2>—_ makes the closed system inopera-

tive even for the simplified vehicle diagram that has been re-
duced to a single integrating element. It is proven in the
general theory of digital control systems [11] that if poles of
the closed-system transfer function have absolute values larger
than unity, the resulting closed system is unstable.

We should also take note of a difference in the frequency /137
spectra of the analog signal and the signal that has been quant-
ized in time and amplitude. Thus, the relation between the
spectra of the analog and pulsed forms will be as follows for the
pulse sequence F[z] shown in Fig. 3.15a after the digital com-
puter when the envelope F(s) is transformed:

, 1 §m1 2ntk
F [ —
Ijm:' TO 1 F(Jm j TO)
Ll I
= [ FUF (jo— s T)HF (o)) (3.204)
After conversion to the level-quantized signal _|=F, which re-

quires separation of the first difference and Integration, the
~spectrum becomes

—F ___exp joTy—1 2 ( _ Zﬁﬁ,
- (Je) JuTpexp juTy fo—1J =

-—
—_ exp fulg—1

= rver Ty [FU+F (- 5) 4+

+F (et )l  (3.209)

The notation in the right sides of (3.204) and (3.205) permits

an approximate conversion to - the spectrum of the level-quantized

signal from the first term, which 1s the spectrum of the analcg
signal. . .
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3.4, MATRIX AND STRUCTURAL-MATRIX DESCRIPTION OF THE CHARACTER-
ISTICS OF THE VEHICLE'S ANGLE~CONTROL LOOP

The matrlx method can be used to solve the same problems di-
rectly 1n the time region and permits conslderatlon of nongzero
initial conditions in highly lucid form.

To illuminate the properties of the method, we write Eq.
(2.78) in the time reglon in the modified Cauchy form:

W(O=0+44,()-+40—)3 1 ]
==t 00 —2F R+R0-)31+

i (3.206)
+Lmpip. J
a7

The modification of the equations reduces to introduction of
the pulsed components ¢:1(0—)8{] and ¢P2(0—)é[/] into thelr right sides.
On solving the differential eguations after integration of fthe
pulses introduced into the right members, we obtain the initial
values of the response:

f(04)=9(0~=) $(04)=9,(0—),

which are equal to the assigned initial conditions. Subseguent
determination of the responses for (>0+ requlres full solution
of the differential equation system (3.206) with assigned pulse
inputs and the addition to it, on the basis of the superposi-

tion principle, of the sclution of the same system for the 1ni-

ttal disturbance — M()1[t).
ag

The type (3.206) equations can be given in more general
form:

by=b bigby+ My
By ==bypy - Brgdy - 1] (3.207)

‘i’zzbm‘h ‘I‘ bzz‘P2+Ms

with the complete coefficient matrix, which will be indlcated
here and below by straight lines:

by b | 0 1
|B|= A s |- (3.208)
21 23 "';'2‘ "';‘2‘

The coefflcient matrix corresponding to the initial equation of
vehicle angular motion (3.206) appears on the right in (3.206).

If the response is also written in matrix form
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Y g ' (
- q‘!l "Psn 3 2 0 9 )
with subsequent conversion from the particular responses wik at a

given output (1) to a disturbance at one of the inputs (k) to the
general components wi of the response vector

LP.I. ‘Pll + l‘pll
Yol [9ntda |

then all equations of (3 207) can be written in matrix nomencla-
ture

[¥i=

, /139
(3.210)

N! I ==

l¢!=45Hw+%ﬂﬂ- (3.211)

This equation can be solved for any input matrix |M| as a first-
order matrix differential equation, Let us consider the baslc
steps.and examples of solutions.

Derivation of normalized welighting function matrix

If the input is given in the right members of the general"”
equations (3,206) or (3.207) 1n the form of unit pulses, the in~
put matrix will be written

) ¢ ‘ .
]M|=|Mal=l C[)t]. aml- | (3.'212)‘

In this case, the response wlll be represented by the matrix of
the normalized welghting functions

Wi =|g|= fn £ ‘

A

(3.213)

a1 faal,

which are determined from (3.211), which assumes, for the parti-
cular input under consideration, the ferm

(g|=15|g|+IM.. (3.1214a)

The formal solution of the flrst-order matrix equation of type
(3.214a) takes the form - .

lgl=e" =exp|B|t | (3.214D)
and 1s called the matrlx exponential.

The matrix exponential 1s expanded in power series

I EI=IE B+ BF Ll Lt . (3.215)
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where the matrices on the right-hand side play the role of the
coefficlents of the series in powers of t for the concrete an- /140
gular-motion problem under consideration and have the values

0
]EF=l$ ll {unit matrix): (3.216a)
o 1}
IB]= —ay —a | © (3.216b)
e e [
-Gy —Q| =0, —a
=% —
g, ﬂ-f—ao ’ (3 « 2160)
Bpa| M o= (3.2164)
Gg— Goaf 200“1 — o
[~ 781 ]
£, 2yl - f
g ———t—{_ 1
8 kel |
3 J
. ISR — oo~ |
Lz e
S . & .
L ="

Figure 3.16. Structural-Matrix Dia-
gram for Vehicle-Angular~Motion
Channel,

The sum of the terms of series (3.215) 1s formed from the com-
ponents (3.216a~d...) in the form

A
e1=| (3.217)
where 2 s .
% a0y oy
A‘fl 21 + 3l UREEL 2 +
a} —aq) £3
—Fiijﬁ—Lu%n..;

i
=
P



)

"B=— —a, Ogh, 12 %(GD—
ol +—5—+ =

+ ...

(G‘f — (ID) £

...~{-i—alt+——-2—[—~—+....

The multidimensional (matrix) represéntation of the normalized
weighting function can be illustrated graphically by the struc-
tural-matrix diagram shown in Fig. 3.16, which was compiled from
formulas (3.206) after normalization of the coefficients and
their replacement by the more compact notation indicated in the
right-hand side of (3.216b).

To clarify the principle by which one element of the res-
ponse is formed, e.g., gy, some of the lines in Fig. 3.16 have

been made heavier. Examining the locop formed by these lines, /141
we note that after the first integration (1/s), the pulse has

been converted to a unit function, and will have the value of

the funetion gn(0+)=1 at time t = 0+, which corresponds to

the first term in the notation for this function in the matrix
(3.217). The function glE(t) is determined after the second

integration, so that we have gi(0+)=0 at t = 0+, which also

follows from the notation for this funection in matrix (3.217)
1f we put ¢ = 0 in 1t.

Nor is it difficult, using the expressions obtained earlier,
to write the complete solutions in matrix (3.217). Thus, 1n
the notation given in the right member of (3.216b), the welight-
ing funetion (3.11) is reduced to the form

ity £

gul) =t * sin (1 Vo,—a)), (3.218)
V ag——l]'.]
and the product of the series for the function é;?f and

sin (f Va,—a!) gilves at once the series written into matrix (3.217).

The solution obtained in matrix form is quite easily produced
on a digital computer by the standard subroutine for the matrix /142
exponential that was desecribed in [9].

In the case of higher-order equations, the structural-

matrix diagram will contain the same elements that appear 1n
Fig. 3.16, namely:
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— the coefflclent matrix |B);

— the integrating matrix, written

1o ... 0
8
oL ... 0o
el 0T 0 0 (3.2198)
00 ., 1
8

— the input vector M or the input matrix

M0 ... 0
— o M, . .. 0O
Mi=|E[M= = T T (3.219b)
o 0,

— the response metrix [¥|;
— adders, branch points, and connecting lines.

Derivation of aftereffeect vector

We shall use the term "aftereffect vector" for the process
in which the dynamlc system eliminates asslgned nonzero initial
conditions ;(0—) and ${0—) — & process that 1s multidimensional

in the genersl case but two-dimensional for the present equaticn
system (3.206). Denoting the aftereffect vector by I, we obtaln
i1ts components 11, and I, as linear forms of the particular

normallzed welghting functions 81y in the notation

- =“'ﬁ(0=)gu+%(0"')g1ﬂ i_
T=0,+7, |‘~]’1(0_)gu+‘!’s(0"‘)gsul (3.220)

Derivation of weighting function for vehicle angular motion on /143
application of moment

As At + 0, brief unit moment pulses
My=MAt==1

give 7rise to a response in the form of a change in the angular
position of the vehlcle; thils response is called the dynamic-
system welghting function and is denoted by

w0, [r)=;‘—9— FNO% - (3.221a)*

#In this formula and below the first subscript identifles the angle,
and the second one the moment.
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In the present case, we use a single concrete normalized
welghting funetion 815 (angle-moment ). '

If the pulse is not a unit pulse, but the short-duration re-
quirement is observed (A+—0), then the response takes the form

of (3.221a) with its seale changed in proportion to pulse height,
i.e.
’ MgAf

Yo =M Alw, )= 2 12 {£)- (3.221b)

If the interval At is comparable with the time constant of
the dynamic system, an input that 1s constant on this interval
and vanishes outside of it is written as the dlfference between
the shifted step functions: - :

, MIN=M,11)—M,1[t— 2. (3.222a)

The response is aécordingl& obtained as the difference between the
shifted transient responses:

bus [£)= My {hyo [)— hyp (£ — AF)). _ {(3.222b)

Substituting the integrals of the welghting functions for the
transient responses, we obtain

[4
b [)=M, [ gua()dv, (0t at)
0 .
: { " (3.222¢)
bal)=Mo{ g(D)av—M, { g(x—ajav [ T
¢. - Af
L (Al < o0). ‘ .
An exact evaluation of the conditions for conversion from the

transient Qifference to the weighting function in accordance .
" with At 1is given 1in [25].

Derivation of wvehiecle's standard—input response matrix

The standard input disturbances to the vehicle that were
examined in Sec. 3.1 can be assigned in matrix form 1f they are
regarded as solutions of the modified Cauchy equation system in
the form (3.207) but are written with new coeffieilents and ini-
tlal conditions. Writing the system for formation of the inputs
simultaneously with system (3.207), we obtain the .unified equa-—
tion system

q:'1=bn‘P1+bn‘I’z+ 0 + 0 -H’l(o—)ﬁlfll
'q‘zzbm%‘!"bm'{’g""bﬁ"a + 0 +4,(0—)3]]
M1="'?3=0+ 0 +bsaq’a+baa‘?4+\ba(o+)6[f]-
Mz=:!’4=0+ 0 ‘-,'bmq’s‘l'bga%‘i‘q‘a(o‘l‘)a[t] Jl

(3.223a)
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In the second of these equations, the coefficient b
troduces the function

23 = l/a2 in-

1
’1".152:|"“'=a_2M(f), (3.223b)

which is obtained as the solution of the system formed by the last
two equations. These equations can be solved independently of the
first two, but our objective 1in thils article 1s not to solve these
equatlions, but to write the equations for the given solution
(3.223b) by selecting the coefficients b, ik and the deslired ini-

tial values wi(0+) (1 =3, B); k = 3, §).

To simplify the selection, Table IV.2 gives coefficient

} baa bﬂd
matrices [ha be

the fifth 1line of the table glves for a harmonic input

corresponding to the standard responses. Thus,

baa=by=0; by=1, by=—Q2

For the harmonle oscillations to have a phase ¢ and an amplltude
A, it is necessary to select 1nitial values that satisfy the con- /lMS
ditions given in columns 3 and 4 of the table: ¢(0L)=Asino,

H(0-L )=Acos s

After determination of all coefficients, the matrix of the
combined equatlion system is written

bll b12 0 O
b, b, b, 0
bl=| "2 20 o3 ,
BI=18 0 by by (3.2242)
0 0 b43 bﬂ
°r 20 0. . ..... 0
coefficient R
matrix of wvehicle Lo o o
equation system b0 0
0. 0 :, coefficient
imatrix of system
""""" iof equations forming
0. .. .. .. L0 tlnput disturbance

The rank of matrix (3.224a) is determined by the second-
order vehicle dynamie¢ equation that was chosen for the investiga-
tion and by the complexity of the input, which 1s also a solu-
tion of an equation system that has been reduced to the second

116



order. The form (3.224b) generalizes the more complex cases of
arbitrary order of the equations: the coefficients of the vehicle
equation system will always be placed in the upper left corner of
the matrix, occupying an nrXn square (where n is the order of the
vehicle equation system), and the coefficients of the equation
system forming the input disturbance will be placed in the lower
right corner of the matrix, occupying an mXxm square (where m

is the order of thils system of equations).

_ The two equation systems are related through the coefficlent
bn,nt1, which appears in (3.223b). Irrespective of the rank of the

matrix, the equation for determination of the partial normalized
weighting functions remains in the form (3.21Ha), and its solu- /146
"tion in the form of the matrix exponential (3.214b). This

solution 1s expanded in the series form (3.215), and the digital-
computer algorithm can be written in the same type of procedure
regardless of the rank of the matrix.

Below we shall follow through the procedure for obtalning
the solution:only for the specific coefficient matrix (3.22-a).
Inspecting the conditions for ralsing the coefficient matrix
to various powers in the examples of formulas (3.216 a-d), we
note at once that the zerc elements in the lower left corner of
the matrix remain vacant, and the solutlon in the form of the
normalized welghting function matrix assumes the form

Fa Fz F13 Bus

g =| &2 B2z Koz o
e A S | (3.225)

0 0 gu Zu

It is easy to convert from the normalized weighting function
matrix to the response to the given input and simultaneously to
take account of the aftereffect regime brought about by the pre-
sence of the nonzero initial conditions. The general expression
is written in the form of the wvector :

by $(O0—=)au+9%H0—)gu+%h0+) g +4:(0+) g1

Yo [ |} (0— :"321‘1‘%(0'_)g22+%(0+)gm+q’4(0+)gz,

t U (04 ) 2302 (04 54 ' :

by Yo (04 ) Fan+ % (0+) 24e (3.226)

The first component wl of the response vector 1s the basie

component, and the entire procedure set forth above was, strictly
speaking, elaborated for 1t. The terms P (0—)gn and ¢2(0—)gi

reflect the aftereffect regime, while Pa(0+)giz and  pa(0+) g re- .

117



flect the forced response. In the digltal-computer solution, the
starting functions are the gll’ gl2, gl3, and 814 obtalned in the

course of the solutlon, and the unknown sum wl is formed from

them with the weighting coefficients %(0—), $(0—) ¢(04) and
P4(0+) . It is unnecessary to extract the second response-vector
component wz, sinece it is a computer printout auxiliary. The

third component ¢3 represents the input disturbance, and it is
helpful to print it out as a check. The fourth component wu /1
gives an indirect characterization of the input disturbance and

need not be printed out.

Simpler formulas, e.g., a formula for the forced motion alone,
follow from (3.226) when some of the weighting functions have
zero values. .

The second-order angular-motlon equation used as a basis
for the present chapter has made it possible to obtain a number
of clear-cut relationships between tcharacteristics of the vehi-
cle that can be used for comparatlively fast identification of
the primary parameters of the wvehicle on the basis of test data.
The same method can also be extended to more complex cases.

Such simplification of the more general equation system

(2.50) is typically encountered in wind-tunnel tests of models
and on certain unperturbed segments of trajectories.
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CHAPTER IV

CHARACTERISTICS OF THE AEROSPACE VEHICLE AS A
STATIONARY LINEAR OBJECT OF CONTROL WITH
CONSIDERATION OF ADDITIONAL DEGREES
OF FREEDOM

4.1, ADDITIONAL DEGREE OF FREEDOM INTRODUCED INTO ANGULAR MOTION
- LOOP BY DISPLACEMENT OF THE CENTER OF MASS

s
[
I=
o

b.1.4A, Change in Transfer Functlons

The filnal values of the vehlele's transfer functlone, whlch
take account of both the motlon of the center of the mass and the
motlon about the center of mass, are given in Appendix III (see
column headed "Short-Perlod Motion'"). In the present sectlon, we
shall examlne reclprocal effects between the loops deserlblng the
angular motion and the motion of the center of mass and the con-
ditiqns under which theilr characteristics are deformed.

"If we return to equation system (2.36) and confine the se-
cond equation to the steady-state relation between the elevator
deflectlion angle 6 and the angle of attack a, 1l.e., -

S | 7
o oMe 1
0= _'_‘ adl ' 7 (u.l)

it 1s sufficient to use only the filrst equatlon to determine the
increment in the slope angle (motiocn of center of mass). With
this approach, the second equation of system (2.36) reflects,
instead of direct coupling (4.1), an additional degree of freedom
that governs the coupling between o and 6 vlia & second-order

differential equation.

If the angle of attack 1s expressed in terms of the angle of /149
plteh and the trajJectory slope angle in the second equation of
system (2.36), and then the moments from the change 1In 9 are com-
blned wlth the elevator moment

My =M dby— M;Aa-Mgné (4.2)

and the sum 1s consldered to be given by program, it 1s suf-
ficlent to lnvestlgate the second-order equatlon, as was done 1n
Chapter III, for the angular motion. In thils case, the first
equation of system (2.36) introduces an additional degree of
freedom Into the actual formatiocn of the moment.

The change 1n the statlonary characteristics under the ad-
ditional conditions is conveniently studied on standard elements;
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Figure 4.1. Expanded Structural Diagrams
of Vehicle Longitudinal Motion. a) With
disturbance in the form of a moment and
a force; b) with force disturbance ex-
cluded,

for this reason, we shall rewrlte Eq. (2.36) in operator form
with standard coefflcients, eliminating the variable Aa and
the inerement symbol:

(Ts-+1)0 (8)=asd (5)+ F* (5% (4.3)
(T3 2T+ 1) ¥ ()=(Tas+ D0 (5)4M" (5}

where

v o  F p F
TR T R P (b.1)

4 ¥

7

These equations were used to compile the structural diagram
of Fig. U4.1la, the top of which represents the vehicle's equation /15¢
of moments in the form of an oscillatory-element structure, while
the bottom represents the equation of forces in the form of an
aperiodic-element structure. We shall refer to the coupling
between these elements as the major loop.

We then obtaln the transfer function with respect to the In-
put M¥, and omit the force increment F¥,

For an open major loop, the transfer function of the entire
circuit will be

g (T25 + 1)

W.(s)=
1(8) (T03+1)(T¥32+QET13+1)' (4.5)

For the closed loop, with consideration of the positive
sign of the feedback, we obtain a function of the form
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W ) TUS 41
«5)= —-.
H( TQT?Sa + (Tg +2ETUT]) §2 4+ (Tp+ 287 — aaTE) S+1—-09 ( 4 . 6 )

The éynamies of the angular motion are not affected by the
equation of forces when the coefficients a3 and TD are small.

When the relation

(Ty LT (T o+ 2T, —asT ) Ty Ty (1 —aa), (".7)

whieh proceeds from the Hurwitz stability criterion, is satisfiled,
the oscillatory component in the vehicle's motion becomes non-
damping, i.e., the original characteristics of the vehilcle are
strongly deformed. In exactly the same way, a substantial change
in the characteristics and the appearance of unstable components
of the motion result from a change in sign of the polynomial
coefficients in the denominator of transfer function (4.6), 1.e.,
when

ay>1 or asT,>T,+ %7, (4.8)

4.1.B. Change in Frequency Characteristics

Relation (4.6) yields the gain-phase characteristic

, Julg+

W, (ju}= /151

)= Tl {fo) -+ {T3 + 267671} (Ju)? + (To + 2671~ -
+1 ' (4.9)

— a,72) (Ju) + 1w ay

From Expression (4.9), we can determine the gain-frequency
characteristic -

‘ IWZ (_f(u)! —

_ . (0l + 1 ,
- [1—ay—(T1 + 2T} 7122 + [T + 26Ty—ayTa) 0 — TeTye¥)2 (4.10)
and the phase-frequency characteristic
@y (w)= arctanwTy—

(TG + QETI -— aﬂT-;) w— T{)le.'i

— arctan—
‘ L—ay — (7% + 267yTy) w?

(4.11)

Instead of calculating the characteristics analytically,
use may be made of the plots of the logarithmic characteristics

for blocks Wy and W, in Fig. 4.1b.
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Let us present the closing formula (4.6) in the form

W, = o Wul—=We) _
VT W 1 Wa (=W
S S 4 W .
TWe T =Wy —wg 7 (4.12)

1t will then be sufflelent to find the frequency charsacteristiecs
of the —wl loop from the sum of the logarithmie frequency charac-

teristics Wy and —Wg (the minus sign causes a 180° phase shift),

use the closing nemegram (Fig. 3.14), and obtain the logarithmie
frequency characteristics of the closed W3 leop. To convert them

to the unknown characteristles of loop W2, 1t 1s necessary to
subtract,'in logarithmic units, the amplitude wc from w3 and to
add the phase W3 to the phase _1/wc in accordance with (4.12).

The influence of the characteristlcs of the loop correspond-
ing to the equation of forces on the frequency characteristics
of the angular-motion loop (equation of moments) can be seen di-
rectly from the inverse frequency characteristic of the closed
loop, which equals

W e e (4.13)

If the addlticnal term —WC vields a pogitive increment to
the amplitude and phase of the inverse characteristic 1/W2, the
increments of the unknown characteristic W2 will have the op-
poslte signs,

4.1.C., Root-Locus Charsts

Figure 4.2a shows the structural diagram investigated pre-
vicusly, but without the 1nputs F* and M* and with an 1solated
coefficlent as.

We introduce into the open-loop transfer function without
the coefficient @ the symbol "n," which signifies normaliza-

tion (as=1), 1.e

() Tos -+ 1
1n Tos + D (TIs2+26Tps + 1) ) (4.14)

The poles of thils transfer function are indicated by the
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Figure B.2. Allowance for Effect of Clecsing
"Large Loop" (Thrcough Equation of Forces)

on Poles of Angular-Moticn Transfer Punction
of Vehicle. a) Modified Structure (see

Fig. 4.1b); b) roct-locus charts plotted
against coupling coefficient.
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crosses In Fig. 4.2b. The two conjugate poles nq and no coincide
with the poles of WM before closing, whlle the third, real pole

n3 = —-l/T0 is intrecduced by the function wc.

The c¢ircle in the same figure indicates the position of the
zero of the operator transfer functicn wl, i.e., Ay = —1/T2.

On closihg of thée loop when as=0, the poles 54 of transfer
function W3 coincide wilth the poles indicated by the cresses on
the figure, and then when a>0 , the pecles begin to migrate,
following the path known as the root locus.

We determine the angle at which the roct locus emerges from’

point n, from the formula

m

lim arg (s —n) =2k — }: arg (s, —A;)+

F1+Ta J=1

—}-iarg(sl-—n,). - (4.15)

w2

In the present case, the number of terms in (4.15) is de-
termined by the orders m = 1 ¢f the numerator and n = 3 of the
dencminator of transfer function Wln' The wvalue of the first

term on the right side of the formule is governed by the posi-
tive sign of the feedback.
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Connecting all poles and zeroes to the first pole with
straight lines, we obtain the difference vectors that appear in
the sums of formula (4.15), whese argumerts are denoted by the
¢i (i =1, 2, 3) in Fig. 4.2b.

We then obtain instead of (4.15)
¢=0—¢ 49,1 (4,16)

The pesitlions of the zerces and poles in Fig. 4.2b have been
adjusted arbitrarily in such a way that the angle of emergence
of the root locus (4.16) equals zero (vector ny-n, crosses vector

Al-n3 at its center). The roct locus beginning at pcint P will
have the same angle of emergence in virtue of symmetry.
Let us now determine the asymptote of the root locus. It

has a slope that can be determined from the formulas for positive
feedback

2l
n—m'

(4.17)

P

"
fd

i.e., we have in this case for I = 2, n = 3, m=1
@ = = T, (4.18)

Thus, the root lcel are initlally directed toward the imag-
inary axis. This implies that coupling via the coeffilcient ay

in the equation of forces results in a decrease in the absolute
value of the real parts of the transfer-function poles, i.e.,

the relative damping factor begins to assert itself in the
characteristic of the vehicle as determined without this coup-
ling.

Each point of the root locus corresponds to a specific value
of as, which is determined from the positive-feedback formula:

1 (@Tost+ D) (TosT + 2T 15,4 1)
Win(s:) Tosi+ 1

ap=

(4.19)

If the root locus has already been plotted, 1t 1s sufficient
to substitute the difference vectors from the particular point
sk to the initilal values of the poles and zeroes and apply the

formula

d,,n (&e — 1)
@p == il
€ bmg) (k=) (4.20)

to key the polnts on the locus with values of a.
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Figure 4.3. Consideration of the Influence
of the Coupling Coefficient l/To on the

Poles of the Vehicle's Transfer Function.
a) Structural diagram; b) root loci.
In the present case, we have in application to (4.19)}

a“‘ — ToT"1 (s — M) (Sr = 12) (S — ).
k Fa{sp=—12p) (4.21)

Let us now investigate the dependence of the root loci on
the coefficilent 1/T0 in the equation of forces. For this pur-

pose, we open the loop in Fig. 4.la at the output of this coef-
ficlent and transfer the unit feedback around this coefficient
to the output of the upper block as shown in Fig. 4.3a.

‘We determine the normalized open-loop transfer function
for this structure:

i
: (T'*'T“ )“" 1
Win(s)=~ ——=
Tist4- 28T+ 1 8
. aa(Tgs+l)--(T?32+2Esz+1) (4.22)

qT%L+%ns+1)

Reducing similar terms in the numerator, we have

7952 4 (%Ti—a,7) s + 1~ 2, (4.23)

| T Y e TP

“Let us assume that the numerator of thls fraction has com-
plex roots Al, 12; then the poslticons of the zeroes and poles of

the transfer functlon can be represented as seen in Fig. 4.3b.
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For negative feedback, formula (4.23) has anether constant
term on its right-hand side, 1.e.,

i arg (s,— )= (2 — )~ 3 arg (5,— )+

$1T
I=1

_}‘E arg (s;—"1;)- (4,24)

[

After marking out the difference vectors in Fig. 4.3b, we can
calculate the angle of emergence of the root locus from point nq

(for l/TO = 0) from the formula
g=a—;— P+ 95+ ¢4 (4.25)

The root loci can then be graduated with values of the coef- /1!
ficient 1/T determined from a formula analogous to (4.19) but

applying for negative feedback:

(L) — — S2(Se—m) (Sg—~T) (4.26)
To/x (sp— A1) (s — o) .

1 T Tty n =y \ T
4.2. ANGULAR MOTION WITH HDDITTGNAu DEGREE OF FREEDCM INTRODUCED

BY FIRST-HARMONIC ELASTIC OSCILLATIONS OF THE BODY

Let us present certain data on the mathematical model of an
elastic element. In a complex system, all material points of a
vehicle with elastice structure describe an angular and transla-
tional motion that can be represented as a combination of various
harmonics. It is a rather common practice to replace a complex
elastic system by a sum of linear elements with a transfer func-
tion of the form

kg

uya(3)==";;jp-§5-

, (4.27)

where ke is the matching transfer constant and  1s the harmonic
frequency of the bendlng vibrations.

Vibraticons in an elastic element are excited in the form of
additional terms on the appearance (impression upon the input) of
moment or angle increments, and the response of the elastic ele-
ments appears in the equations of moments and forces and in the
angles of rotation of the wvehiecle's axial line. 4 matchling
transfer constant ke is chosen 1in accordance with the steady in-

put and output.
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Axis of rigld structure and
perallels to it

-Gyroscope mounting P
pogitlen !

o —

y " Ground reference
direction (heading)

Figure 4.4. Schematic Representation
of Form of First-Harmonlc Elastilc
Vibrations in an Idealized Cylindrical

Vehicle. ¢ 1s the angle of rotation of
the rigid structure, wo is the angle of

rotation of the elastlc line relative
to the axls of the rigid structure,
measured at the nose of the vehicle;
we is the same angle, but measured at

the poslition of the gyroscope; ¢1 is

the total angle of rotatlon of the
elastic line, which can be measured
with the automatlc-stabilizatlion sys-
tem gyroscope. - : .

Below we shall discuss only evaluation of the additional
axlal-line rotation-angle increment introduced by bending of the
_body, bearing in mind that the remalning problems are examlned
in the book [15]. We shall also confine ourselves to the first

harmonic. We see from Flg. 4.4 that a gyroscope in the nose
section measures

Y=+ (4.28)

When the gyroscope is mounted 1n the tail sectlon, 1t is
easy to establish that '
e 5 b

g ©(4.29)
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If the part of the elastic-element fransfer function (4.27)
that reflects the course taken by the angular vibrations in time
is written for the point corresponding to the nose of the vehi-
cle, then 1t is necessary for the remalning points of the body,
which have distances I from the nose, to assign the function

x(y="e, (4.30)

which determines the sign and magnitude of the ratio of the bend-
ing angles at the arbitrary and end points.

For a selected mountingposition of the angle-measurling de-
vice (gyroscope) 1, the magnitude and sign of () are defined,
and the transfer function of the elastic element is understood
to be the ratio of the transform of the response [the angle of
rotation we(s)of the elastiec 1linel %o the input disturbance

[to the moment M(s)]:
/1

v, -1 (4.31)

Let us now take as our base the structural diagram of the
vehicle's angular motion in Fig. 3.12b and supplement it with
an elastic element having the operator transfer functlon
(4.27) for the input and output indicated in the form of (4.31).
We then obtain a new structural diagram (Fig. 4.5a), on which
the additional adder realizes formula (4.28) and the total an-
gle ¢m is measured by a gyroscope in the automatic-piiot feed-
back —kf.b'

Operation of the automatic pilot culminates with the de-
velopment of a controlling moment at the controls that 1s op-
posite in sign and corresponds in magnitude to the disturbing
moment , '

Figure 4.5b repeats the preceding structural diagram (dia- /1
gram "a"), except that, firstly, we have removed the adder for
input of the disturbing moment, since it 1s not required for an
investigation of the natural motion only with emphasis on stab-
111ty and, secondly, we have separated an elastic-element loop
with an automatic stabilizer characterized by the transfer
coefficient —kf b to which the element characterizing the rig-

id wvehicle is connected in the form of a feedback.

It is easy to convert from diagram "b" to diagram "c¢" of
the same filgure by assigning all elements except the elastic

128



element a common transfer function

Moo R Y of the form
YT T s 2ts v | :
ke . lp‘é_r) ’ S
st ) @,(3)= —kt.p _
. —= AT
o l—_k.;):l’_.' ¥m ! Tis2 - 2ers + 1
T | SN A S k. ke 11 Bl
24 GZ | I+ kg Tas? ¥ 279 +1 . (H4.32)
. th :
) s AT
M|l The transfer function of the rig-
[ e M 1d vehicle closed by negative feed-
TSRS T back across an autopilot has already
- b) pveen. presented [see formula (3.159)
AR :1£%; : for the function @1(5)1. Since the
| ST |
dJ%I elosing conditions remain as before
— Py(s) in (4.32), the characteristic poly-
o " nomials (denominators) in (4.32) and

(3.159) are the same, so that the
fficients T, and e determined
Figure 4.5. Structure coe © 3 @ £3 ar

of Angle-Control Loop by the respective formulas (3.161)

of Vehicle With Elastic and (3.162). But since ¢,(s)
Element. ~ a) Initial

: characterizes the ratio of the new
structure with element- tpans forms
ary automatic pilot; ‘
b,c) modified struc- @(szMew)
tures. ‘ @ (4.33)

o : 1ts numerator is not the same as that
of Ql(s) and it has a different transfer constant

e
b= 'f.b

14+ khsg ) (H-SM)

Let us carry out a stabillty analysis of the guided vehicle with
the elastic element. For thils purpose, weé shall first use the

Nyquist frequency criterion, in which the rotation angle of the
N-vector is estimated [25].

‘According.to this eriterion, we investigate_the gain-phase
frequency characteristic of the. entire open 1oop'Cé(jw) shown in /160

Fig. M,Sc,‘which_equals

. kg @ ke '
i[5 | 0T (435
'€ 5= fo L '
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Figure 4.6. Gain-Phase Characteristics of
Vehlcle's Angle-Control Loop Opened at
Elastic Element. a) Characteristices of Gui-
ded wvehicle @2 and loop ¢ with elastic

element according to structure of Fig.
4.5¢; b) excerpted segment of loop fre-
quency characteristic for caleulation of
vector rotation angle as far as point of
discontinuity; ¢) same, beyond point of
dlscontinulty (when the frequencies of the
elastic vibrations are on the segment of
the GPC in the lower half of the complex
plane).

The formulation of the closed-system frequency criterion of
stability depends on the nature of the poles of its open-loop
transfer function.

Let us assume that the function ¢2(s) that appears in the
loop formula (4.35) has all poles situdted in the left half of
the complex plane. The second cofactor in this same formula

(4.33) is written in expanded form and has two poles 81 o =
L]

=+ jﬂe sltuated on the imaginary axis, i.e,, two so-called
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-, neutral poles.

Stability requires the argument increment
& arg N (jo)= Apy=2 %=n.
Lo (4.36)

Figure 4.6a is a plot of the gain-phase characteristic C{juw).
The construction was carried out in two steps:

4 ,
— construction of the hodograph of the function i;—Qzum) in
e

a form that is arbitrary for general validity of the conclusions;

— multiplication of each vector of this hodograph by the

2
scalar W, ,(o)= ﬁge ~ in accordance with formula (4.35).
e @ S
At point w = 0, we have We n(O) = 1, and the hodograph of
C(jw) coincides with that of j;;@dﬂﬂ- At point w »> «, we shall
a

€ .
have we n(m) + -3 here the amplitude decrease is inversely pro-

portional to the square of the fregquency, so that the terminal
segment of the hodograph of C(Jjw) is opposite 1n sign to the ini-

,Ak.
tlal segment of the GPC E%-¢ﬁjmf and approaches zero more raplidly.
e .

At the point w = Q_, the hodograph of C(jw) has a discontinuity,

so that it is necessary to examine the segments of the hodograph
before and after the point of discontinulty. We denote

Qe — =1lm (9, — pu) (4.37)
and | | iiég
Qe .-]'_ == l“f[:l’igs-e 1 -_\m), ’ ( LI- . 38 )
then :
) ,
CJ2—)=+ooi D,(/2) (4.39)

i.e., the asymptote for this point of the hodograph is a semi-
infinite straight line drawn from the origin through the point
bg

jﬁ-gﬂjﬁg. Figure U4.6b shows the entire segment of the C(jw)

-
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hodograph for variation of the frequency in the range 0w, -

The hodograph for frequencles in the range Qe<o<oc ap-

pears in Fig. 4.6c, where the value of the vector at the point
of discontinuity 1s

k .
C(jQ+)= — -;,,: 2,(/ %) (4.40)

The asymptote for this vector i1s a semiinfinite line drawn from

"v
the same point zf-mgﬂﬂ through the origin.
-]

The point -1, jO0 on the left half of the real axis 1is the
origin of the vector N(jw), which ends on the C(jw) hodograph.
Figure 4.6a shows the vector for the frequency w = wy, 1.e.,

N(jwi). To find the increment of the argument of the N-vector

and compare 1t with (4.36) for the discontinuous GPC, it is nec-
essary to make separate measurements for the increments of the
argument ¢1 before the discontinuity and the argument ¢2 after

the discontinuity and add them [25].

We have from Fig. 4.6b
pr=arg N{jQ,—)—arg N (7 0), (4.41)

and it follows from Fig. 4.6c that
$a=ag N (joo)—arg N (jQ +)= —n—g, (4.82)

from which we obtain the sum

A al‘gN(jm)—._—cpl-|-cP2= —n= =2 .%_

For this particular form of the hodograph and for the case /1
In which the point w = Qe lies in the lower half of the complex

plane, the N-vector has rotated fhrough minus two quadrants,
since both of the terms ¢l and ¢2 are negative. Consequently,

condition (4.36) 1s not satisfied and the system is unstable,

l.e., the elastic osclllations sensed by the autopllot's measur-

ing gyroscope are then converted to moment increments at the con— /1
trols that inerease them instead of stabllizing them.
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Figure 4.7. CGain-Phase Freguency Character-
istics of Open Loop with Elastic Element and
the Following Features: a) Frequency of
elastic oscillations on segment of GPC 1In
upper half of complex plane; b) same, but
GPC @2 entirely within the first quadrant;

¢) GPC Qé entirely within the third guadrant

due to change in position of gyroscope in
the wvehicle.

Let us now consider the case in which the polnt w = Qe on
the hodograph of ¢2(Jw) lies in the upper half of the complex

plane (Filg. 4.7a). Drawing an infinite straight line through
this point and the origin, we obtain -an asymptote to which the
following vectors are parallel: N(j2_-) 1in the upper haif-

plane and N(jne+) in the lower half-plane. Calculating the
increment of the argument of the N-vector (Fig. 4.7a), we ob-
talin

" — for the zone 0Lw<<Qy:
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Pr=arg VN (jQ, —}—arg N (j0)>0; (4.43)

— for the zone Qp<wLeo:
Pp=arg NV (joo)—arg N (jR+)=4n—o,. (4.4u)
The sum of the angles is
Aarg N(ju)=pto=+n=12 2 (4.45)
and satisfles condition (4.36).
Thus, for a system that is stable without the elastic ele-

ment, the transfer function @2(3) has all poles in the left

half-plane. Closing of its loop by a negative feedback across
the elastic element does not disturb the stability conditions
if the frequency of the elastic osclllations on the hodograph of
@2(jw) lies on the segment occupying the upper halif-plane. This

condition can be written analytically in the form
Im (DQ(]Qy) >0, or
0<arg @ (jQe) <m. (4.46)

This is a necessary but insufficient stability condition for the
present system with an elastic element., In fact, 1f the C(Jw)
hodograph crosses the negative real semiaxis to the left of the
point —1, jO0 (see dashed lines on Fig. 4.7a), i.e., if the mod-
ulus of the N-vector is greater than unity at the frequency of
intersection of the real axis denoted by W, then the new incre-

ment to the argument on segment ISu<Qe will be
o= —~2n+q, (4.47)

and the sum of the increments
darg N jw) ;; Py — X (14.148)
will not satisfy condition (4.36).

Changes in the magnitude and sign of ¢i result from the new

conditions of motion of the N-vector along the C(jw) hodograph.
We see from the vectors N(jow) (k=1,2,34...) 1ndlecated on the fig-

ure around the point -1, jO that the N-vector rotates in the ne-
gative direction.

Thus, the necessary and sufficient stabllity conditions are
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the phase condition (4.46) and the amplitude conditlon
|C (Jua) | < 1, (4,%49)

which is formulated as fallure of the C(jw) hodograph to bracket
the point -1, jJ0Oo. If ¢2(s) is considered not in general form,

. k

but ‘in its specific form (4.32), then the hodograph of ?ﬁ-¢ﬂjm
a

will assume the form shown in Pig. 4.7b, The terminal segments

if the hodograph are determined by limit transitions in (4.32),
‘€.,

N .
3%¢e(]0)=%ljﬂ‘1’auw}=m%m' (4.50)

b o
W SV =g (4.51)

@

The GPC lies entirely in the first quadrant. In thls case, as
before, we mark the point on the hodograph with.the frequency
w = Qe, draw the asymptote and construct the segments of the

C(jw) hodograph for the freguency ranges before and after ne.

Such constructions are indicated on the same figure and permit
caleculation of the increment to the N-vector argument:

amarg N (j2g—)—arg N (JO)>0, (4.52)
pp=arg N{joo)—arg N (JQo+)=+n—g, (4.53)
- This 1s followed by determinaticon of the sum

parg N (Jo)=g o= +r=2 2. (4.54)

The sum satisfies condition (4.36), and the vehicle's angular-
control loop with. negative feedback across the elastlc element
1s always stable. However, in accordance with Fig. 4.4 and
formula (4.30), the sign of the negative feedback through the
elastic element depends on the position of the measuring
gyroscope along the elastic axls of the structure. The gyros-
cope becomes most sensitlive at the nodal points; when 1t is
transferred from one node to another, the sign of ke changes

and the loop shown in Fig. 4.5b becomes a positive rather than
a negative feedback loop as a result of the two sign reversals
in @2(3) and k.

" 8ince the entire preceding stabllity analysils and the
formulation of the frequency stablility criterion were orlented
to the case of negative feedback in the loop, the simplest ap-
proach is to reduce the positive feedback loop to the same case.
For this it is sufficlent to consider, instead of the element
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@2(5), another element @é(s) with the opposite sign, i.e.,
Dy (s)= — Dy(s), (4.55)

Then element Qé(s) 1s covered by the negative feedback through
the elastic element.

ke
In Fig. 4.7c, we have constructed a hodograph of Tf-mgum)
“e

silmply by c¢hanging the signs of all vectors of the %fq%(jm

L]

ka ]
hodograph of Fig. 4.7b. Since the 7§—¢zum) hodograph was en-
“e
Tirely within the third quadrant (lower half of the complex
plane), the necessary condition (4.46) is not satisfied and the
system is always unstable. Thils also seen from Fig. 4.7c, where
the inerements to the N-vector argument are both negative and
their sum is

Pr-fpy== —m, (4.56)

We note that the more general hodograph of ¢2(jm) in

Fig. 4.6a will, after the sign change, have segments in both the
lower and upper half-planes. Thus elastic oscillation frequen-
cies at which the system as a whole 1s stable exist for it i~
even when the sign of ke changes.

()

In many of the cases examined above, therefore, the vehicle
has the potential capability of retailning stability even when
secondary bending vibrations of the body make their appearance.
In these cases, the stabilization is due to a favorable phase re-
lation in the loop, which results in a response of the controls
such that moments that tend to cancel the bending oscillations
are applied to the body.

Cases in which condition (4.49) is not satisfied call for
a change in the amplitude relations that reduces to a decrease
in the gain of the loop containing the elastic element.

Let us consider one more potentially possible way of
stabilizing elastic oscillations that is offered by the controlled
aerospace vehlcle. Let the vehlcle have no aerodynamic damping
(£ = 0), and let the role of this damping be taken by a tran-
slent feedback in the autopilot (see Fig. 3.11c). Then

Foi(S)=keyt-Trps (4.57)

must be substituted for kf b in (4.32), and the vehicle's W(s)

must be replaced by the new transfer function
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W (s)= N (4.58)

T2 4 1

which gives

Lo, () AT Gl AR (0D
i : bkkﬁ1+Aﬁjs- 1252 + KT S + |+ kRy
t“s +1 L )
| _ krs  (L£Ts) (1 + 757 (4.59)
| T |+ kkgp Tos?428Tas+1
here '
T.r Tf b 3
ey |
y T ( u . 60 )
VT khey t
E— ka,], I
3 =
J

2T'1f14-kkfb

We now determine the transfer function of the entire open loop
shown in Fig. 4.5c:

kek£,b (1+Ts) (1 + v%52) . (461
CS)= gy (Tis>+2%:Tos + 1) (s2+ ) ( )
We denote ' T ' ‘
PR, 5 T . N (4.62)
(1 + kb g S :
and '
1
Qe=—1- (4.63)
Then relation (4.61) becomes _
: . 24+ 02y 0l
Cl5)= Re(l+Ts) (s2+9) Qe Uls) | (4.64)

QZ(7%? + aTas+1) (24 9F) V(9
Here ﬂn is the freguency of the vehicle's natural undamped
vibrations as an ideal rigid body.

Let us investigate analytilcally the stability of the loop
closed by negative feedback with the transfer function of the

entire open loop (4.64). For this purpose, it is sufficient to

write the characteristic polynomial
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U@+ ()=l + [2es:ra+ (%5)’1;;] o

+[Tu¥se‘%+ 1+(%§)’ kv] AT R H(1R)RY.  (4.65)

@ {jw)
w=0
LN ocweny,

b)

Flgure 4.8. GPC's of Undamped Vehicle in
Loop Clcsed by Forcing Autopilot. a)
First stage in construction of GPC mark-
ed with natural and elastic vibration
frequencles; b} second stage in construe-
tion of GPC from complete formula.

For simplilcity in the notation, we cancel the terms contain-
ing T and use this polynemial to write the next-to-last Hurwitz
determinant [267]:

1 T3 0

2
YK 1+T§sa£+(%') b1 e

[0 (144,) 0% o]
“453?393‘%[ (%n)z“ ‘]' (4.66)
According to the Hurwitz eriterion, it is sufficient to /16
satisfy the condition
0. 2, (4.67)

for the determinant of (4.66) to be positlve, 1.e., the frequency
of the rigid-vehicle natural vibrations must be smaller than the
frequency of the elastic vibrations, which is usually the case.

The fact that the elastic vibrations can potentlally be
stabllized in this way is easily explained with reference to the
frequency characteristics. Figure 4.8 is a plot of the GPC of
the function
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s ()= g

T352 2 96, Tos + 1 (h.68)
4
which differs from the function ¢,(s) by the cofactor 14yist= n;jz

‘n

in the numerator of the fraction in (4.59). Since the denomina-
tor of function (4.68) is of order one higher than 1ts numerator,
the entire hodograph is situated, as a rule, in the fourth
quadrant. The points w = f_ and w = §_ are marked on the
hodograph. 1 ©

It is easy to convert from the hodograph of ®3(jw) to that
of Qz(jm). Indeed, the cofactor

sz _ 02— w2
Q%?- S—jw— 9211 (LI'.69)
causes the entire function to vanish at the frequency w = Q: /170

Qz(jﬂn) = 0, where the tangent to the hodograph at the coordinate
origin has the slope

arg Mg (jQn).

It is indicated in Fig. 4.8b that the segment of the hodo-
sraph for the freguency range 0 < w < Qn is oriented along the

tangent whose direction has been transferred from Fig. 4.8a near

Rn, where the characteristic passes through zero.

For the segment of the'hodograph in the frequendy range
i, < w < =, because the numerator of (4.59) has a higher order

than the denominator, the absolute value of the fraction in-
creases without 1imit, and the sign change of the cofactor of
(4.69) for w > @, transfers this entire segment of the hodograph

-from the lower shaded sector in Fig. 4.8a into the upper sector.

It now becomes clear that when condition (4.67) is satisfled,
the point with frequency w = Q . falls on the segment of the

hodograph in fhe upper half of the complex plane — a necessary
stabllity condition, as follows from the constructions gilven in
Flg. 4.7. The same condition (4.67) is sufficient for this
type of hodograph, since its intersection with the real axis
occurs at zero absolute magnitude, and the amplitude limitation
{4.49) 1s unconditionally satisfied.
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4.3. CONSIDERATION OF EFFECTS OF SEVERAL ELASTIC-VIBRATION HAR-
MONICS ON STABILIZATION CONDITIONS

We shall use a formula analogous to (4.27) to take account
of additional elastic-vibration harmonics:

K _ Yi(s)
Wei(s)= s2+52? = M) (4.70)

Here 1 is the number of the harmonic, ﬂi 1s the bending-vibra-
tion frequency of the harmonic under investigation, wi is the

additional angle introduced by the vibrations of this harmonic
in the gyroscope readings, and ki is a coupling coefficient

whose magnitude and sign are determined by the conditions of
harmonic analysis of the elastic vibrations at the mounting po-
sitlon of the gyroscope.

The angle measured by the /1]
gyroscope in the presence of

Mo X several harmonics 1is
by clst+2es+1 ¥
! PPN o
- " ¥ - S P (4_71)
2.." . J—C') Twl
57"9’ The angilar-stabilization
PR Py structure of the vehicle has
{ ST ar j> been constructed in Fig. 4.9 in
| accordance with (4.70) and
| o (4.71); 1t is a development of
A3 Py I Fig. 4.5a.

Tt 1is convenient for the
~kgp fe— ¥m analysls to replace the concur-
rent-parallel elastic elements
by a single composite elastic
Figure 4.,9. Structural Dia- element whose transfer function
gram of Guided Aerospace Ve- is determined from the formula
hicle with Elastic Elements

of Several Harmoniecs.

W)=V U6y A2 %) (24 0) + (st 4 0) (24 9)...
¢ dmd ST+ 97 Vi) (st + 7) (s7+ <)

...(s2+93)+ cer (32+Q‘;")...(s2+ Q;‘:_l)
...(s2+95) ' :

(4.72)

We then substitute 52 = p in the numerator polynomial U(sz) and /1
reduce the polynomial to the form
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U(p)=Ap=t 4 Apgp™ 2. . Ap+ A,

. . , n
N ‘ A=V %
where i ,_E, ; |

A0=2 ngg e Ql—lklgf'i'l e Q"_IQ".
i=1

( Ffom the condition
_ U(p)=0
we find the rdéots of this polynomial:
Pu Py, Pooy,
aﬁdfwe can fhén write instead of (4.72)

n—1

£ T (s2—pp)
(=1

Wal(s)=

M1 (s2+ 2)

nrem ]

(4.73)

(4.74)

(4.75)

Clje)
W<y

Figure 4.10. Construction of GPC
of Gulided Vehiecle with Several
Elastic-Vibration Harmonics.

If the roots p, are real and

negative, we can make the
substitution

— pr=ri. (4.76)

Then (4.75) is brought to the
form
Tl (2443 |
Wels)= k= (.
TR ey T
1

=

This element is closed by the
feedback loop with ¢2(s),

whose GPC is shown in Fig.
ﬂ.?b and repeated 1n Pig.
.10,

We mark the polnts with

frequencies Q,, @, Qs @y ... On this hodograph. Figure 4.10

examines the case in which these frequencies alternate, i.e.,
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We shall convert to the hodograph corresponding to the com-
plete open-loop transfer functlon

n—1

N (s2+0?) .
Cs)=D, (s) k:'——‘_—_‘"‘"" (4,78}
M (s2+ <)

el

and, finally, estimate stability by steps.

As the first step, we construct the hodograph with only one
of the cofactors in (4.78), i.e.

C{s)_@(s]u-———QT, (4.79)

This construction has been carried out in Fig. 4.10 and was dis-
cussed previously with the aid of dlvision into the frequency
zones before and after ﬂl, We then mark the points with fre-

gquencies W 5 92, ... on the second segment of the hodograph.

On the basls of the criteria considered-above, the elastic
vibrations are stabilized 1in the Cl(s) loop. We now go over to
the loop

C.(8)=C,(s)

s-+92 ' (4.80)

lies in /174

2 LA .
m with

L T

On the hodograph of C (jw) the polint with frequency

the lower half of the ﬂnmnTPt rlane; therefcore a syst
two elastic-vibration harmonlcs having a transfer fu

the form (L.80), is unstable.

e
netion of

But before drawing this conclusion, let us consider a'Ci(s)
complicated by one of the cofactors in the numerator of the frac-
tion in (4.78), namely:

€1 (5)=C, (5) (2 + o3). (4.81)

The additional cofactor moves the hodograph to the coordin-

ate origin, and the segment for frequencies Wy < w < = falls in

the first quadrant, i.e., in the upper half-plane.

Now for the loop with the function
Cais)=Ci(s) —2—. (4.82)

§24 0p
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we have prepared the segment of the hodograph indicated in Fig.
4.10 by the dashed line; the point with frequency w = 2, lies

on this segment, and since it is in the upper half-plane, the
gecond-harmonic. vibrations are stabilized. ' '

Thus, the fortunately placed zeroes in the transfer func-
tion of the combined elastic element (4.77), which alternate
with peoles of the same function, can preserve the stabllity of
the controlled vehicle in the presence of elastic structural
vibratlions of several harmonics.

The condltion for alternation of the zeroes and poles
Qe <9<, <Ry, ' (4.83)

which 18 necessary to ensure stability, conforms rigorously to
the theoretical premises of the galn-phase criterion. Indeed,
each palr of neutral poles in the open-loop transfer function
1t 1s necessary for a'stable system that the vector turn through
& positive angle 7 [see formulae (4.36)], while &n increment n
times larger in the N-vector argument 1s required for a formuls

of the type (4.78), 1.e.,
Aerg N (Jo)y=nn. (4.84)

These ilncrements of the N-vector argument, which are necessary
for stabllity, are, so to speak, genersted automatically by the
dlscontinulty conditions of the GPC as the N-vector slides /175 -
along the hodograph from the direction of the positive real

semlaxls to the direction argly(/Q) and from the direction— arg®,(iQ)

to the direction of the positive real semiaxis with observance
of the amplitude conditions of stsbilization (4.49) and when
the segment of the hodograph with freqpency Ri lles in the up-

per half of the complex plane., And this comes gbout each time
the hodograph passes through a point with frequency Wy s where

the GPC contracts: to zero and changes sign.
4.4. CHARACTERISTICS OF LIQUID-LOAD OSCILLATIONS

Tc take account of oscillations of the liquids in the tanks,
a single generalized 1input coordinate 1s introduced for the
osclllatory system; it 1s denoted in Flg. 4.11 and in the for-
mulas that follow by Ty where 1 1s the number of the tank in

which the oscillations are being investigated.
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To equation 5% : 2
of moments |5 M3 Szh-i}
Mg ) g I - r r v
~1 S 5102 [ ¥ Ry ™
tk 1K
|
1087 SPR
“To eguation 1
Fg Y
d of forces . - ,

Response . Excitation

Figure 4.11. Block Dlagram Taking Account of
Liguid Oscillations in the Venhicle's Tanks.
MM 1s the dynamlc moment coefficient; Mg is
Eé% static moment coefficient, fg is the
dynamic forece coefficient, *», 1is the coef-
ficlent for a dynamic input proportional to
the angular acceleration in pltch iéh &g

is the coefficient for a static input pro-
portional to * %, 1is the coefficlent for a

dynamic input properticnal to the linear ac-
celeration in the vertiecal plane.

The following coefficients must be assigned for this coord-
inate:
g, O u., R Nﬂj' f'\’\,,;;, Hv‘é‘ j.‘)‘ , /\J,,T-
As was indicated in Sec. 2.3, the generalized output coordinate
811 (k is the number of the liguid-oscillation harmonic) satisf-

ies an equation of the form
é+¢é+¢ﬁq==k;54_aﬁﬂ+4§§_ (4.85)

The dlscussion that follows, which ftreats certain problems
of the influence of liquid tank loads on the dynamics of the
vehicle, wil}l be based in this chapter on the assigned equation
of the liquid oscillatory system (4.85) and the corresponding
structural diagram, which appears in Fig. 4.11. The center of
this diagram is occupied by the transfer function of the liguid
osclillatory system, which 1s defilned as the ratio of the trans-
forms of the generalized response g(s) and the generalized in-
put r(s), i.e.,
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W, ()= L4 — (4.86)

rs) 8 es s

The coefficient £ at
the first power of s 1in the

A : denominator of (4.85) ensures
damping of the osc¢illations
Mt 1 7 g and is governed by the mutual
{2 T — frietion between liguid par-
ticles, but principally by
r/;"L a& the provision of additional
2 P baffles with small perfora-
M5 2ep T.54 ! - ‘tions in the tanks. Since
2 ¥ z TosH 1 . this increases weight, damp-
J - RGs2+ ing of liguid oscillations
| c 1PalrZs +RA is often made the function
Y of an automatic stabilizing
,2~\\ : device. Then the equation
f¢s of the object itself, if
g€ = 0 is simplified to
! . 1
T g SRt [r ° Via($)=5gr - (4.87)

where Qik is the k-th har-

monic frequency of the
liguid-load oscillations
in the i-th tank.

Figure 4.12. Expanded Longitud-
inal-Motion Structural Diagram

- of Guided Vehicle with Considera-
tion of One Harmonic of Liquid-

Load Oscillations. In Fig. 4.12, this

element has been made part
of the over—-all structural diagram of the vehicle. This diagram
was based on Eqs. (4.3), in which the angle 6 was replaced by
the coordinate ¥, which is related to it by g=V(#)sini.} For
small increments, we have from A6 and AV

ay=V (£)cos 0 (f) A0+ AV (¢)sin 6(£)=c (£) A8+ ~(¢). (4.88)

For the program-assligned values of V(t) and 8(t) about
which the controlled process takes place and glven values of
AV(t), the product Vcos@ can be included in the common coef-
ficlent c(t), and AV(f)sind(§ can be replaced by the function.
v(t) as indicated in the right member of .(4.88). Thereafter,
e(t) is regarded as an assigned time function, and this func-
tion is "frozen" at specific seconds in the analysis of the
liquid-load oscillations, which are rapid by comparison with
c(t). As an added assigned input, the function v{t) will
henceforth be omitted in the stability analysis. The coef-
ficients in the baslc equations are fixed in similar fashion, .
and after conversion to the increments the equations can be
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rewritten in coperator form:

(738 287,54 1) D (s)==(Tys + 1) 0 () +
H{(MPp M) g (s) | M*
(8)+/7 8 ()4

(Tos+ 1)0(5)=aod (s

(2422 g (s)=(Rys*+ Ry) H (s)+ Ry (s)=
= Riesl (s)+(RG "4 R;) B (s
sy (s)=c8(s).

~ /1

(4.89)

The last equation of system (4.89), which agrees with (4,88)
after elimination of the increment symbol and the disturbance ¢,
can be taken into account 1f interest attaches to s separate in-
vestlgatlion of the behavior of the y-coordinate and can be omit-
ted if, as was done 1n the right member of the third equation of
(4. 89), a conversion 1s made to the direct dependence of the in-

put on 8,
k¢ b
M %
‘/////%I WQ@O )
[' ay
% s+ 8 A D A 'E's
,,E To S+ Ts+ | it
ST >
- 2
IJ"F.‘S Cv'RyS -\ I
f{.&'z |
—
g ST+ =

Figure 4.13.

Flrst Step 1n Trans-

formation of Structure of Fig.

4,12,

Figure 4.12 repeats /1
the dynamlc structural
dlagram for the vehlcle's
motion in the wvertical
plane as 1t sppeared in
Flg. 4.11, except that
the transfer function
Wc(s) has been divided in-

to twe elements correspond-
ing to the denominator and
numerator of the fraction
Wo(s). For this reason,

g is indlcated 1n the
18

1/(T s + 1), and the signal

N4 is shaped after multl-
plication by the coeffic-
lent ¢. The coordinstes

y and ¢ are the input
dlsturbances for the
liquld osclllateory element,

and thls makes it easy to introduce this element into the
structure under consideration and to apply its response q via
the appropriate coefficlents to the adders in the partial struc-
tures based on the equations c¢f moments and forces.

In Fig. 4.13, we have elimlnated the force and moment input
distprbances, since we propose to consider only problems of
stablllty, for which the inputs are omitted in a linear analysis.
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Figure 4.13 is further
‘ simplified by elimination of
' the cross couplings present
"in the structure. For this
purpose, each term particlpat-
ing in formation of the

quantity 6 is also brought
to the generalized input

& ws)

2

sl ls?
w (B vligs” {REs%eRY

9 Tost!
p

ayCRYs

Tos¢! ¢ adder r, 1.e. the element
‘ kLS

Tos +1 -

Here the signal & will
encounter the element

h@sﬁm

+

FCRSs? is duplieated.

Tos+1

(=

/ r
[N | - _ aacRys

5702

i o8 4 1
the adder r. This transfer
function is combined in '
Fig. 4.14 with the already
existing coupling between
the same points of the diagram via the element Rgﬁ-FRQ

on its path to-

Figure 4.14. Second Step in
Transformation of Structure of
Fig. 4.12.

(Tas + 1) Jis?
ToS + 1

combined similarly in the left-hand side of Fig. 4.14 for dia-
gram segment g-M.

The transfer functions M)s*4-M; and have been

After removal ofvfhe Cross couﬁling on the g-r segment of
SeRys®

which
Tos+1 -

the structure, we are left with the elements.
are indicated on Fig. 4.14.

After the completed transformations, the liguid oscillatory
element in Fig. 4.14 is found to be bracketed by a feedback loop
‘which, while complex, has standard element circult diagrams.

We may therefore plot methods for stabllity analysis of such a
system. For this purpose, the frequency. characteristic Wz(jm)

is converted according to the rules set forth in Sec. 3.3.B Into
the GPC of a diagram with negative feedback thorugh‘kf b2 i.e.,

W3 (jo) This GPC is multiplied by the GPC of the series-

L bt . (1 + jaTg) fFfw2 " ageRfw

. J(l] a w . . 8
connected elements — M" — ME® — 2767 and Ri—Riot4j %
q g 1 + Ju T() 1 + jmTD

and added to the GPC of the element connected in parallel, 1.e.,
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A complex~plane hodograph is plotted from the general GPC
obtained in this way. Just aé in the case of elastic osecilla-
tions, the osclllations in the liguid oscillatory element are
damped if the point with frequency f lies on the segment of the
hodograph in the lower half of the complex plane (the case of
positive feedback) when that element i1s closed by this feed-
back.

The stability analysis can alsoc be carried out by analytic-
al methods, since we have the complete system of initial equa-
tions (4.89), to which we should either add the autopilot equa-
tion

Meon™ =Ry (4.90)
or simply rewrlte an equivalent equation system from the struc-
tural diagram of Fig. 4.12, as the equations of its adders.

To consider not only
: o oS 5] ' the first harmonic of the
=@ b1 25 g . the liquid-load oscilla-
il Pie] Pn] PR RERL RER] 000ni0%) Te70s nones-
,4;:}} sary to introduce the
appropriate additional
7y : csclllatory elements in-
_ S , to the structural diagram
-___..@_,(5 | of Fig. 4.14, each with
: : its own frequency Qi and

lzz'
J EatioE new coupling coefficients
cessas Ri and Mi' Bullding up

= . the structural diagram
1Ry ’L to take account of sever-
- : al liquid-oscillation
540t harmonics 1s a somewhat

Figure 4.15. Expanded Longitudinal- more complicated task

Motlon Structural Diagram of Guided Eﬁ:nszgﬁgtﬁia?uéigigimup
Vehicle with Consideration of Sev- s

for elastic vibrations
e njluld-Load Oseillation as indicated in Fig. 4.11,

gince 1t 1s necessary to
add a total of T elements
and coefflclent blocks to the structure according to Fig. 4.11
for each new harmonic. If the already transformed structure in
Fig. 4.1 is used as a base, each new harmonic requires the in-
troduction of four elements.
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Figure 4.15 shows the development of the structural diagram
for several harmonics.

The structural diagram is built out in exactly the same way
in the presence of several liquid-filled tanks oh the vehicle.
The coupling coefficients obtained are quite different in magni-
tude and sign when the effects of tanks in the nose and tail
sections of the vehicle on stabilization dynamics are considered.

Thus, while a position of the GPC in one half of the com-
plex plane is found to be favorable for stability in the case of
nose-section tanks, it may be necessary to have the GPC in the
other half for tail-section tanks. :

In reality, it 1s necessary to consider three typeS*of ‘oscil- /182
lations simultaneocusly in the complete dynamic stabilization sys-
tem for a heavy vehicle:

1) oscillations of a vehlele with ideally rigid structure
and "solidified" liquid in the tanks;

2) elastic vibrations of the body in all harmonics that
influence the readings of a gyroscople instrument;

3) oscillations of the liquid load in all tanks and in a
number of harmonics in each of the tanks.

Despite the complexity of this general'eaéé,'the methods of
analysis that we have examined above with reference to simpler
examples remain quite effectlve

In some case, it is necessary %to consilder the effects of the
elasticity of the controls and the polnts of attachment of the
control engines in the mehicle transfer functions in addition to
the factors examined above.

4.5, POSSIBILITIES'FOR USE OF EXPANDED STRUCTURAL DIAGRAM OF VE- /183
HICLE AND ANALOG AUTOPILOT FOR DEVIATION AND DISTURBANCE
CONTROL

We shall examine this problem wlth reference to the vehicle
lateral motion given by Egs. (2.50). We convert from these
equations to the operator form wlth standard coefficients:

T+ DT (S)=as9 ()+F% (4.91a) |
(Tl + 275+ 1) ¥ (s)=(Tas + 1) ¥ )+ M, (4 .91b)

where
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Phase
margin

Flgure 4.16. Control-

Loop GPC of American "Saturn"
Rocket Booster with Many De-
grees of Freedom.

'] a’ =1l
25 ¢
ns ; (4.92
QT ety Ty )
iy g
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_ f -
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i ﬁ AT r Ip
5 hgf T 528541
M*| [
Z v D A F°
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Figure 4.17. Expanded Struc-
tural Plagram of Lateral-
Motion Loop of Vehicle with
Automatic Pilot Working on
the Prineiple of Deviation
Control in Angular and Lin-
ear Coordlnates.

The right-hand side of the structural diagram is drawn in
accordance with formulas (4.91a) and (4.91b).

Let us conslder the casée in which there 1s no disturbing
moment from external factors and M¥ 1s developed only by the

automatic pilot.

feedback through the automatic pilot in the yaw loop.

We shall use k¢ to denote the cecefficient of

it is

expressed in terms of the autopilot coefflcient, which relates
the deflecticn of the gyroscope to the deflection of the con-

trol surfaces

and the coefficlents of the eguation as follows:

§A=:%%F? (4.93)
b= k"'f,?—" (4.94)

This coefficient has Leen introduced into the structural

diagram of Fig. H.17a.

The control deflection also gives rise to a force that is

evaluated by the second term on the right in Eq.

(2.44), After

normalization cof the coefficlents, which has been done in
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(4,91a), the coupling coefficlent between the equations of
forces and moments 1s replaced by the new coefficilent

. ko2 k'APzB',
a1‘=1-—23na:=1— zﬁ”ﬁ ‘ (}4095)
with consideration of the static behavior of the autometic pllot. /184
We shall ignore the dynamics of the automatic pilot in the pre-

sent analysis. The moment M% of Flg. 4.17 alsc includes addi-
tional components, which are formulated on the left side of the
structural diagram. Let us analyze these components with the
princlple of deviation control as our example.

Let the vehicle be acted upon by a (normalized) force F¥
that causes a deviation that can be converted intoc a lateral
vVeloclty by the formulsa

2=V, - (4,96)

The lateral acceleration can be measured by accelerometers
mounted on a gyroscople platform stabilized in the z-direction,
converted to autopilot signals, integrated, and used to gen-
erate (normalized) moments that compensate the deviatlon and
are proportional to the velocity LM%), the coordinate (Mg),

ete, For these moments we introduce the transfer functions

Mi(s)= —k; [s2 ()], | (4.97)
M;(3)=—k,—:;-[s£.’(s)] (4.98)
and indlcate the condltions of thelr generation on the left /185

side of Fig. 4,17. According to deviation control prineiple,
negative feedbacks are created after measurement of the de-
viation: static feedbacks without integrating elements and
floating feedbtacks that contain integrating elements. The _
number of integrating elements determines the order of astatism
and the possibility of compensatlng the constant component of
the disturbance and its varying part.

In the present case, the devlation ¢an be understocd as
the lateral veloclty

z(t) < sZ(s), (h.99)

s¢o that an lntegrating element i1s present for it in the moment
feedback.

-If the dlisturbance 1s donstant,F*=;F&%cmmhits transfofm
is-FS/s, and we can obtain the steady-state value of the system
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response z to thls disturbance from the formula
zdv:li_g]Fo\!’/;p{s), (4.100)

where W, is the cperator transfer constant from the disturbance

to the résponse z.

This functlon is determined from the structural dlagram in 1
the form
_ sV (Tos 4 1) (7352 + 26715 +
W;r(8)=—1ra, 7
s [(Tls -+ 2ET,§ + 14 k‘:) (Tos+1}—a (Tas+ 1)] +

+14k) . (4.101)
+V (B S+ E) (Tas + 1) e,

the order of astatism is equal to the exponent v of the lowest-
order term in the numerator of the transfer function. In this
case, v = 1,

HmW' Sl=
50 ZF( ) 0' (“4.102)
and a constant disturbance is fully compensated in the steady
state (t » »). If the disturbance varies at a constant rate
F¥(g) = Vo/sa, its compensation requires second-order astatlsm,

i.e., two integrating elements. With increasing order of the
polynomial describing the disturbance, the necessary order of
astatism, i.e., the necessary number of Integrating elements,
increases accordingly.

_klp
Nt ey 21 J
: Tisteoerss
ay
) Ls+r | F' )

LW " g | 7,507 ]mz

Figure 1.18. Expanded Structural
Diagram of Vehicle with Minor-Loop
Control and Compensatlon of Wind
Actlon on the Basis of the Disturb-
ance-Control Principle.

The transition to the steady state 1lnvolves long time in-
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tervals (theoretically, t + «). Treatment of the guided aero-
space vehicle as a stationary system becomes highly approximate
in this case, so that only the tendency toward compenszation of

a disturbance can be estimated, while exact calculation natural-
ly requires consideration of nonstationary behavior.

Similar estimates can be made for the other disturbances
eperating on the vehicle and in the autcmatic-pilot loop. If
1t brackets the point of application of the disturbance, the
negative feedback 1s the compensating factor for all disturb- .
ances in the case of deviation ccentrol, but the degree of com-
pensation and even the order of astatism of a given system may
be different for different disturbarces.

Let us now consider the possibility of compensation based
on ancther principle, which 1s known as the principle of dis-
turbance control. Let a vehicle in the atmosphere be acted
‘upon by a wind whose velocity is ww. If the center of pres- /187

sure does not colilncide with the center of mass but is aft of
it, 1t becomes possible to compensate the wind drift by adjust-
ing the characteristics of the vehicle and the automatic pllot.

Let the noﬁmalized force and moment from the wind be
Fémk‘r:‘ﬁfé, (4'103)

Me== — kW, (4.104)

We represent the wind action on the structural diagram of
Fig. 4.18, on which we isolate the segment pertaining directly
to the vehicle, eliminagting 211 inputs and intrcducing only the
disturbances (4.3103) and (4.104).

The conditions for full* compensation of the lateral~drift
wind effect reduce to balancing of the forces summed on adder 2.

If the total force FE equals zero,; the steady-state response

will élso be equal to zero, i.e., the line frcmAFﬁ to ¥ on the
structural diagram can be broken.

The notation fcor the force-balance equation is extremely
simple: :

r

a.,

We= kW, : |

A content corresponding te the right-hand side of the a-
bove equation must be invested in the coefficient kF to obtain

compensation atfany time. For the steady state (i—>o00,5=0) the
balance reduces to the algebralc relation

’

.

kF:le{g( : (4.106)
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If the vehlcle 1s ungulded, 1.e., there is no feedback
through the autcpllot and kw = 0, the balance of foreces will

take an even simpler form:
| kr == yay. (4.,107)

The physlcal sense of this relatlon is that the moment from
the wind turns the body of the vehlecle 1n such a way that the
projection of the thrust P, which appears 1n the coefficient,
and the lateral aerodynamic force, which 1s proportional at
small deviations to the angle of attack, compensate the disturb-
ing force of the wind.

Compensation 1s possible only when the center of pressure
1s aft of the center of mass; then the nose of the wvehicle will
be turned in the direction opposlite to the direction of the
wind force, as indlcated by the minus sigg/in (4.104). But
when the disturbing and compensating forces are of opposite
signs, Eq. (4.107) can be satlisfled in the presence of variable
parameters at some slngle point on the trajectory. The situa-
tlon is different when the vehicle 1s automatlie-pllot control-
led, It is then necessary to revert to formula (4.106), from
whilch we obtaln

P

ke ' (4.108)

The cceffliclent of the feedback through the autopllot 1is
shaped by elements of the autopllot system whose galns are
easlly adJusted. Then, by varylng kw In accordance with

(4.108), 1t is possible to arrive at a condition such that the
forces are compensated at any point on the flight path.
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CHAPTER V

: CHARACTERISTICS OF THE VEHICLE AS A NON-
STATIONARY LINEAR OBJECT OF CONTROL

5.1. COEFFICIENT MATRIX FOR DESCRIPTION OF THE LONGITUDINAL MO-

?ION‘OF THE UNGUIDED VEHICLE

- The aerospace vehicle must be regarded as a nonstationary
objeet of control in analyses of the complete dynamic system
with all degrees of freedom, including the loop for the motion
of its center of mass, and in obtaining estimates for large
time intervals, when freezing of the coefficients at their
average levels results in unacceptably large errors.

Let us consider the equations for the longitudinal motion
of a rigid ‘vehicle (2.36). Formally, the conversion to the
standard form of the coefficients (4.4) is made in the same
way as for relation (4.3), but the coefficients for the non-
stationary object of control must be regarded as functions of
time, so that conversion to the Laplace transform becomes dif-
ficult and the result is written in the form of differential
equations:

To(8) 6 (6)+6 () =as ()9 (1) + F* (i) (5.1)
T3HO¥ O+ 207, () B () + V()= |

=T, ()6 (£) B () - M* (i) (5.2)

These equations were used to construct the nonstationary dia-
gram in Fig. 5.1, which is identical in form with Filg. 4.1a but
reflects couplings only in the time region. The nonstatlonary
structure can be used to arrive at an analog model with wvari-
able coefficients, but 1t is not possible to obtaln the operat-
“or transfer funetion directly. Thus, conversion to the non-
stationary structure and introduction of the coefficient sys-
tem (4.4) add little to our information on the characteristics
of the vehicle as compared to assignment of the initial equa-
tions (2.36).

Conversion to the coefficient system (matrix) correspond-
ing to the equations in the normal Cauchy form is more informa-
tive in this sense.

To convert to this form, o must be eliminated from Egs.

(2.36), and notation for the coordinates and their derivatives
must be introduduced in the form of the unified system
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B=108,; D=0z I=0, (5.3)

We then obtain

Gy=vndy b0, 0408 — )3 [t — 1]+ faim;
V=040 849 (f— )2 [t —4,);
63=b3161+ b:tzﬁz‘{“' baaﬁs -+ 9 (ty— ) 8 [t~ t(,],

(5.4}

Figure 5.1. Nonstationary Struc-
ture of Major Loop in Longitud-
inal Control of Unguided Vehicle.

0{0-) 8 t-t4 - - 1

4 |
|

,a;"'é [ .
e i —
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I By i"" 53?[‘" "‘I & —I‘"'
3650t M * s = i L = ]
gy
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| o Th—t
’-m ¢ o _IIH
i

Figure 5.2, Detailed Nonstationary Matrix Struc-
ture of the Vehlele's Longitudinal-Motion Loop.
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Equation system (5.4) was used in Fig. 5.2 to obtain a non-
stationary matrix structure that is similar in many structural
respects to Fig. 3.16, but has a more complex, time-dependent
coefficient matrix:

() bu(t) 0
|6{t}j=] © 0 1
bx() bra(t) by (t)

We write the ‘matrix equation for the normalized weightlng
functlons in the form

(5.6)

[0l=lgl=IB]lg14+18—2]. (5.7)
Its solution in the form of the matrixant {9] will be
Nel=E+[|B)at + [ls(t)ldt [!B(t)ldf+ (5.8)

i fo
It is convenlent tc ecount the time T from the time of ap-
plication of the pulse.that excites the welghtlng function, 1.e.
T=t—4, (5.9)

Then the coefflclents of matrix (5.6) can be expanded in Taylor
series around the point tO in the form

b (=i (ot ) =binto)+bur(ta) T+ bul) o+ (5.10)

and the matrix itself is written
N N S R SR N W SR
B(t)=] 0 0 1. (5.11)
bl Tt by L byt bbbyt

The notation of the solution (5.8) changes accordingly, as-
suming the form

Igl=£+_f5(r)dt+.f5('r)[fsgr)dr}d~c+
. [} 0 0

+be(?) !jﬁ(f)[fﬁ(f)dr]]dr-[-...;=§1,.
g :

im]

(5.12)

The terms of the series (5.12) are determined by the following
rules:

1 00
0 01
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kijﬁMn;

. T2 . 2 . 2
bu’c"!‘bn "2_1+. .. b121+b12 ';_I"-z-. - bal‘f"e‘bal%—l—. —

== 0 0 T : (5.14)
. g2 .2 . 2
barT -+ by _257_{_ von bt by, ;_lbas'r + by —;T
!;:[ Bl 1,
L= Ldv=
]
Fy(rdy) Fra(vyd,) Fra(tyty)
— 5311’2 +EI3]T3 _{_. . bag‘f2 +.532T3 5331'2 + .1133'[3 i (5 . 15 )

21 3! 2! 31 2! 31

Fa (i) Fa(Tity) Faa(tity)

Only the first derivatives of the coefficlents were taken
into account in the expansions in (5.14) and (5.15), but it is
quite simple to include the remaining terms in. a machine computa-
tion by the procedure considered above.

The relatively simple functions are represented in the matri-
ces in series form, while more complex ones are grouped under
single symbols. For example,

Fla(r, t)= [ba (20 + by (20 . . ] [bm (F) T by (£,) .527 A _.]_{_

Flbrs + byy7| [bsz'r‘f‘baa‘g ]

Fuf7, to)=(by b1y - by,6,) ;g' +.

The above matrix analysis of a system with variable parame-
ters makes the closest possible approach to the method con-
sldered in Sec. 3.4 for the investigation of linear stationary
systems, but it 1s easily seen that the solution depends in the
case of nonstatlonary systems not only on the current argument
T, but also on the time of pulse application tO’ something

that must be reflected in the notation for the normalized weight-
ing functions in one of the following forms:

£ [7! fo)":glf'_fm ty=g(t, fo)s (5.16)
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In addltion, calculation of the matrix series 1s more com~
pllcated for nonstatlonary than for statlonary systems. But
after this procedure is mastered, it 1s easy to convert from
the normalized weighting functions to the response of the vehilcle
to any input disturbance if the disturbance is given 1n the form
of matrices, some of which appear in Table III.2, and the matrix
of the process is then combilned with matrix (5.11) by the proced-
ure set forth in Seec. 3.7.

Then the response will be computed -according to a formulsg
similar to (5.12), but with more compléx matrices. Thus, the
characteristics of the vehilcle in composite motion with condider~
atlon of the center-of-mass motion were determined above as
functions of time-variable coefficients. or matrlees composed of
these coefficients. These matrix relations are expanded with the
aid of the computer.

It is also possible to replace formula (5.12) with a multi-
,Plicative integral [9] of the form '

lg|=1E+B(v,)at,} ... |E+
+B1(%) At 1| F+ B (7)) Ay |, - (5.17)

where B(Tk) i1s the coefficlent matrix with the coefficient
values fixed at thelr averages in the interval Ark.

In accordance with (5.17), the calculations reduce to
multiplication. of matrices with coefficient values that change
stepwlse as T increases.

5.2. THE MATRIX OF THE BASE WEIGHTING FUNCTIONS OF THE VEHICLE

The nonstatlonary aerospace vehlcle can be characterized
by 1ts standard responses. It 1s sufficient to determine the
- responses 1ln the form of welghting functions for subseguent
conversion to other response forms.

For a nonstationary system, the weighting funetion (5.16),
i.e., the unlt-pulse response, depends on two arguments: the
present time and the time of application of the pulse, with the
former replaced in functional notation by its incprement t = -
=t —t,. To describe the controlled object itself and for

purposes of subsequent coupling of the vehicle to the controlled
system, 1t is:sufficlent in the present case to consider the
following base functions:

W

— weu (T, 8) Wor(T,£) )
Won (T, ) wWor(v,f)

(5.18)
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The first indices of
the welghting functions
‘ Indicate the position of
, the response in the form

Wou _ Wor of the angular rotation
L/ ] lt f\\ ) of the vehicle's velocity
| o NNt vector.® or its axis 9.
i The second index indlcates
Tyt — — the point of application
[ ®om | bowy ' of the pulse disturbance
Ii} ¢ ' ~ 5 in the form of a moment M
i A or force F. For subsequent
| consideration of real

i disturbances to the as-

signed input functions,
Figure 5.3. Matrix of Weighting-
Function Curves for the Non- 1t will be necessary to

. : add the equivalent inputs
statlonary Structure of Fig. 5.1. that were omitted in the

conversion from the com-
plete welghting-function matrix to the base functions. Transfer

of the inputs from one point of the structural diagram to another

involves a change in the passage of the signal through elements
with varlable parameters. 1If the transfer is forward along the
signal path, the transformations inherent to the skipped elements
‘are introduced into the input clreuit. If the transfer is back-
ward, the inverse operations are included in the input circuit.
These rules and other devices used in structural transformation
of nonstationary systems are discussed in detail in [25].

Flgure 5.3 showsthe matrix of the weighting-function curves
corresponding to the aforementioned outputs and inputs for one
of the times of pulse application. The shapes of the curves are
adjusted in accordance with the vehicle's parameters after solu-
tion of the corresponding equations, but the initial segments of
the curves can be evaluated qualitatively without detailed solu-
tions.

Thus, only the weighting function Wop will have a step

change 1in the coordinate (6) at T = 0; the remaining weighting
functions will have gzero initial values for the coordinate, and
the function Wam willl also have one for its first derivative

(the velocity) @.

On the change in the time of pulse application, there will
be a change In the form of the response in the nonstationary
System. Consequently, it is necessary to have a series of
curves for varlous times in order to assign the properties of
the vehicle as a controlled object. Instead of a catalog of
curves, we can examine a three-dimensional plot of the weight-
ing function as shown, for example, in Fig. 5.4. Here ohe of
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w

o the sections of the relief cut by
7 a plane Q perpendicular to the Ot0
: axls at a distance to from the
NN ¢ ' origin is used for each speécific ///
\ N time of input-pulse application. .-
i)
1
1

N - e,

\ 1t Since the response cannot occur

Iy

e S iin before the input (pulse) is applled,
\ § . -
{/ AN ip,/i the line ¢t tys L.e., the bisector
4

\\;T of the angle between the coordinate

A axes Ot and Oto,‘servesnas9the
. K; boundary for the initial segments
. . of the weighting functions. All
Figure 5.4. Family of Non- weighting functions lie between the
statlionary-System Weight- coordinate axis Ot and this bisec-
ing-Function Curves As- tor.
signed in Relief.-

' ' If we pass a plane P perpendic-
ular to the 0t axes at a dlstance

t6 from the origin, we can obtain a new relief section as shown

on the same figure. Such sections, in whieh t.is fixed and

serves as the parameter while the second argument t, 1is varied,
represent the parametric welghting function, whose. role will be
explained below. The parametric weighting function can be continued’
analytically into the region to < 0; this device is used in con-

verting to operafor representations of nonstationary-system trans-
fer properties.

5.3. NONSTATIONARY STRUCTURE OF THE VEHICLE WITH CONSIDERATION OF
- CERTAIN CONTROL COUPLINGS : ‘

"

Let® us examine the structure of the nonstationary vehicle
with autopilot feedbacks for lateral motion. . : :

The initial equations (2.50) will then be rewritten
Tﬂ{f)ti?.—'l'\lrmaxptp—}—jé*,. . (5-19)
T+ 2&(OT () 9=T,(HY +¥+M* (5.20)

with the standard coefficients

‘ 1
Ty()= " y ay=—1;

1 n. (&) . ny () (5.21 )

i — L . — . —
Tit= 6 * &) Ts
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The nonstationary /¢

structure of the ve-
hicle 1tself has been
constructed from these
equations on the right
side of Fig. 5.5. For
analysis of additionsl
feedbacks in the later-
- al-motlon control
loop, we add one more
kinematic equation
linking the latersal
veloelty to the flight-
path rotation angle:

Figure 5.5, Nonstatlionary Structure of
Guided Lateral Motion of Vehicle. =V (V. (5.22)

These relationships were used to form the structural diagram (see
Fig. 5.5), on which a vertical line 2 appears. To introduce
feedback for the purpose of eliminating lateral drift, it is
necessary to have an instrument that measures the coordinate z or
1ts derivatives. As we know, self-contalned instruments (acceler-
ometers) measure only the acceleration ¥ of the vehlcle, and their
designs may include a converter (integrator) for acquisition of
the velocity 2. Radio devices can also be used for such measure-
ments.

We shall omit the specific properties of the measuring in-
struments from consideration in a géneral description of the lat-
eral-motion control loop, but on eonverting from the actual lat-

eral veloclty Z to the measured lateral veloclity Zneas V€ shall
introduce the measurement-instrument error Am that 1s 1lnevitable

in a real instrument.
Thls is reflected analytically by the formula
émegszé‘{'ﬂn‘ (5'23)

and on the structural diagram by introduction of an additional
adder to introduce the error Am.

The linear coordinate is easlly obtalned by an additional
(instrumental) Integration with respect to veloclity:

zma,=oj-z‘(z)¢zz. (5.24)

If the control system includes a gyroscepic instrument 'that
measures the angle or its deviation from the programmed value
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pr* an instrument that measures the wvelocity ﬁ, and an integra-

tor to obtain the z-coordinate, 1t is possible to provide auto-
pllot feedbacks in the following generalized coordlnates:

 ;5— in angle, — kay
-~ in 1atera1-velocity ki 2
“— in the lateral coordinate, — Iz
All of these couplings are shown in Fig. 5.5, 'The coeffi~

cients }fcqJ kZ, and k include the conditions for conversion from

the measurand to the correspondlng fraction of the controlling-
moment command and reconcile their dimensions, reducing them to
the dimensions of the terms in Egs. (5.2).

The controlling-moment command Mg must be distinguished from

the actual poéwered controlling moment Méon’ and for this purpose

two separate vertical lines appear on the structural diagram.
The commands are converted to controlling moments by amplifiers
and actuator devices. We omlt all aspects of the conversions,
introducing only a symbol for the the conversion and amplifica-
tion errors, Aa. It appears in the formula

Mop== ME-F Aq, (5.25)

and a separate  adder 1s provided for 1t in accordance with the
structural diagram. ‘

In analytic form, the complicatlon of the structural dia-
gram reducgs to replacement of the total moment in Eq. (5.20)
by the difference between the disturbing and controlling mo-
ments:

M= M3y — M (5.26)

"and the. introduction of the following relation for the control-
ling moment:

Meon=Hd+h, V()Y ()1 &, YV(t (¢)at (5.27)‘

5.4, CHARACTERISTICS OF STATE OF NONSTATIONARY VEHICLE AT A
GIVEN TIME ACCORDING TO ADJOINT EQUATIONS

In analyzlng the state of the vehlcle on its flightpath,
1t is often most important to establish the wvalues of all of
its phase coordinates at characteristic fixed times. For multi-
stage vehiclesd, for example, it 1is important to know the state

1
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at the time of staging ts; the wvalues of the coordinates at this
time are then used as 1lnitial conditions 1in subsequent calculation
of the dynamlecs of the separated stage.

A certain amount of preliminary work must be done in order
to determine the conditions of response accumulation as a result
of earlier disturbances of complex form at a given time ts. Let

us first examine the procedure for determining the values of the
welghting function at the same fixed time ts, but with a variable

current time of application of the exeiting pulse. If the posi-
tion of the pulse is measured 1n terms of the so-called "reversed
argument” 1, from the time of observation t, back to the time of

pulse application, the weighting function at ts will be
H(‘ts"'*)zﬁ, ({E‘T) (5-28)

and will be called the parametric normalized weighting function,
in which the time ts Serves as a parameter and only the second,

reversed argument T, varies.

In determining the matrix of parametric normalized welghting
functions g, (¢ ), it 1s now necessary to use, Instead of the ini-
tial equations in the form (5.7), adjoint equations of the form

il » »* -
|2 & €0|=15"G—D)lig" 0]+ I3 . (5.29)
The first cofactor on the right in this equation is the /2
transposed coefficlent matrix with the reversed argument, i.e.,
a matrix of the form
by (t,—7) O by (£g—7)
B (t;— )= by (t,— 1) O byy(tg—) '
0 1 bg(t—1) (5.30)

where the rows and columns of (5.6) have changed places and the
argument in the coeffleients has been replaced by the differ-
ence t, _ 1> Which decreases with increasing T.

Let us now go over to the structure corresponding to Eq.
(5.29) with the adjoint matrix 5* (5.30) and the reversed coef-
Eicients, which 1s known as the reverse-adjoint (RA)} structure

25].

Its form will depend on the sequence in which the coef-

ficients are arranged in the matrix structural diagram, of
which there are two peossible versions.
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Figure 5.6. Reversed-Adjoint Struc-

ture Obtained from Transpose of

Coefficient Matrix (First Version).

In. the first version,
the coefficient arrangement
given by the ftranspose
(5.30) must be taken as a
basis. Then Eq. (5.29)
can be represented graphle-
ally in structural-dlagram
form. On this diagram
(Fig. 5.6), integration 1is
preceded. by summing palred /202
products of row elements
of the coefficlent matrix
and column elements of the
welghting-function matrix:

£ 12 €13
g lLt)=| gy & €ni-
Ly o £33 (5-'31)

To explain the physical significance of each matrix element
of (5.31), assignment of the multidimensional pulse input that

appears on the right in (5.29) is 1
for the input of .each integrator.

ndicated separately in Fig. 5.6
With zero initial conditions,

the weighting func‘:tionsg*ik (i 1s the number of -the output and

k the number of the input) are obtained at the integrator outputs.
Actually, the responses at the outputs are summed over the second
index for disturbances given at all inputs:

.g?éziga-

(5.32)

In the second version, 1t is necessary to retain the coef- /203
ficlent arrangement that corresponds to the initial matrix and
Pig. 5.2; then, to obtain the same solution (5.31), the summa-
tion at the integrator inputs must be carried out with the
column elements of the coefficlent matrix rearranged, preferably
as shown in Fig. 5.7. Here, as in Fig. 5.6, the ccefficilents

Pik(t — 1)

have been replaced only by

their numbers_(indices),

but the responses at each of the ouftputs are indicated as summed
over all pulse inputs according to (5.32).

Figures 5.6 and 5.7 illustrate the procedure of obtaining
revers e-adjeint structures for the specific equation system
(5.4) of the vehicle with a relatively small numbeér of couplings
(n = 3 and byy = b22 = 0). It is quickly observed that this

method is valid for more complex cases with either higher-order
equation systems or larger numbers of couplings. It is also ap-
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plicable to one-dimensional
systems with a single input
and output that are describ-
ed by a ceommon. differential

AN T equation.

Gt = — - L Lit %E behrequ%re? E;
: - 1] evaluate e characteristics
' L-b‘?ﬂ_h&ff-' *‘5 of a vehlecle with respect to
one input F with M = 0 and
J one output 8 on the basis
~il—l 51 b & ﬂ[\— 33 b of equation system (5.1)-
[ (5.2). Then, instead of
the equation system, it 1is

v [z]ﬁ——ﬁ%hdm sufficient to consider az

i ¥ general equation of the form
P iy —o~ it 0 ay ()04 4, (Ot a, (1) =0 ).
‘ (5.33)

Figure 5.7. Reverse-Adjolnt Struc-
ture Obtained from Original Coef-
ficient Matrix (Second Version).

In the transformed
equations (5.1) and (5.2),
it 1s necessary to assume
zero 1nitial conditions
and then, after substituting and equalizing to eliminate the coef-
ficients of the variables ¢ and ¢, to normalize the coefficients
with respect to the highest-order term.

These transformations determine the form of the disturbing
function ¢. The procedure of contracting the system of equatlions
with varilable parameters to a single equation is made easier. by
the method of noncommutative determinants [25].

Introducing the symbol g for the weighting function correspond-
ing to Eq. (5.33), we rewrlte it in the Cauchy form:

‘55’1:_—_ A 22+ 05
=00t 2w (5.34)
fa== — Ay — Gy o — &ygy -+ 3]t —1,]-
Now the coefficilent matrix will be /20
P Pre 313 0 1 0
{ﬂ] = By Pag P |= 0 Q 1
Par Pae ?’aa — &y —a; —d, (5.35)

The structure of the nonstationary system corresponding to
Egs. (5.34) has been developed from this matrix in Fig. 5.8a.
The solution matrix -of equation system (5.34) will present the
weighting functions
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Figure 5.8. Detailed Nonstationary
Matrix Structure. a) Equlvalent to
one-dimensional nonstatlonary struc-
ture; b) representing one third-
order equation.

fulufs| |+« ... g
Bu m 8uw|=|. .. ... gl (5.36)
£a 83y & -.-é '

l.e., the responses at the varilous outputs (1 =1, 2, 3) to pulses /2205
applied at the varilous inputs (k = 1, 2, 3).

By the formulation of the problem that proceeds from the as-
signed equation (5.33), the only unknown is the function ng

= g. The functions 833 = g and 833 = g, which are given in the

third column of matrix (5.36), may also be used to evaluate

veloclty and acceleration (g-force). The functions in the other
columns may not be used in the final solution of the problem

(unless a case of nonzero initial conditions is being investigated),
but they wlll be needed to obtain the basic solutions (g, &, &) in

the form of the matrlxant. If other methods are used in the solu-
tion, all integrators 1n the structural diagram can be arranged /206
in the same line, as shown in Fig. 5.8b.

167



dy by B vy '
T Efﬂ} s Y
(- ___ @
> B URhe *
- (23) (33
‘F{ B o m '
3
——;T;l S .
| J' | F‘E’fg
En=f"
— d
a) Everywhere ai'ﬂi(:bp"c)

i=0,1,2

Flgure 5.9. Reverse-Adjoint Struc-
ture Obtalned from Transposed Coef-
ficlent Matrix (a) and its One-
Dimensicnal Eguivalent (b).

The diagrams of Figs. 5.8a and b are equivalent, as is easi-
ly seen on tracing the connections between the integrators, which
are indicated by heavier lines, and from the supplementary coupl-
ings vla the coefficients.

The conversion to the adjoint equations and structures from
the single initial equation (5.33) will also be made in two ver-
sions.

In the first version, the coefficient matrix is transposed
Just as in Fig. 5.6 except that, owing to the absence of a num-
ber of couplings, the structure obtalned is somewhat simpler,
as shown in matrlx form in Fig. 5.9a and in a form corresponding
to the in-line arrangement of the integrators in Fig. 5.9b.

In the second version, the coefficients remain in the same
positions as in the original matrix, and the reverse-adjoint
structure of Fig. 5.10a is obtained from Fig. 5.8 after removal
of the absent couplings.

If the Integrators are arranged in line, the result 1s the
diagram of Fig. 5.10b. It 1s guite identical to that of Fig.
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Flgure 5.10. Reverse Adjoint Strue-
ture Obtained from Original Coef-
ficient Matrix (a) (See Fig. 5.3)
and Its One-Dimensional Equivalent

(b).

5.9b. Either of these diagrams readily yields the RA equation

inherent to them: .

. S =g = |
s e ot (5.37)
It is obtained as the sum on the input adder after the necessary
differentiatlon of the products in the sum, which are disconnect—
ed from the integrator inputs.

For the original vehlcle equation (5.33), the corresponding
reverse-adjoint equation for determination of the weighting
function takes the form

f‘TJ"“:—tz;[“z(f“f)_g‘(f*")]-l"
+;-la1(t~r ‘=1 ta,f—T1) gt —1)=8[1]. - (5.38)

The rules for obtaining the reverse-adjoint equations, as
illustrated by (5.37), can be generalized to any order (n) of
the original equation. The rules for deriving the reverse-ad-
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Jolnt strucutre from the 1lnitlal structure are generalized in
exactly the same way and reduced to the following simple struc-
ture:

— reversal of dlagram input and output positions;

— substltutlion of branch points for adders and vicé versa,
with a simultaneous change in the directions of all signals;

— reversal of the argument in the coeffiecients by conver-
sion to the functlons ai(ts — 1) instead of ai(t).

Naturally, the rule for formation of the reverse-adjoint
structures from the transposed coefficient matrix can also be
generalized to any order of the equations. Here the pulse musat
be applied at the 1nput of the k-th integrator of the dlagram
to obtaln the parametric weilghting function between the k-th
input and the 1-th output, in order to satisfy the "starting"
conditions of the diagram:

gzk(tv 0)= I- (5'39)

After the parametric weighting function g* has been obtain-
€d, the response of the nonstationary system to an input dis-
turbance x(t) 1s determined from the convolution formuls

oo

4 (¢, 1max)=ﬁ§‘ &7t T)x (Tmax —T) &, (5.40)

where Thax 1s the interval from the start of impressien of the in-
put disturbance to the time tS of observatlon of the accumulated
response. When 1 reaches the value Tmax’ further integration
stops, since the function x 1s thereafter equal to zero.

For a concrete equation, e.g., (5.33), the parametric welght-
ing function g*e¢(t, T) must be substituted into (5.40). If the

asslgned eguation contains derivatives or variable coefficlents
in its right member, the parametric welghting function is denoted
by w#(t, 1) and determined by the procedure set forthin [25], and
Eg. (5.50) 1s witten in the more general form

YT = @ (60)5 (3 =T (5.41)

1]

5.5. OPERATOR FORM OF ASSIGNMENT OF THE VEHICLE'S NONSTATIONARY
CHARACTERISTICS

The convolution equation (5.41) can be Laplace-transformed:
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SUMMARY OF VAR

OF NONSTATIONARY FLIGHT VEHICLE

IOUS METHODS OF ASSIGNING AN'D USING CHARACTERISTICS__ .

Flight vehicle
characteristics

Characteristics
of input

Intermediate
solution-

Response

I. Coefficient
matrix of equations
in normal Cauchy
form

II. Parametric
base weighting
functions:

— in form of
table for varlous
% or as relief of
the function (Fig.
5.4)

IITI. Transpose
of coefficient :
matrix with argu-
ment reversed

IV. Parametric
transfer functions

Standard?input
matrix according to
Table IV.2

Analytie form of .
asslgnment with con-
sideration of time
shift :

Diagonal unit-
pulse matrix

Laplace transform
without considera-
tion of time shift

Comblined coef-

ficient matrix

Convolution

" formula (5.41)

Adjoint
structure

Parametric
transform of
response; for-
mula (5.42)

In form suitable
for computer input
— matrixant (5.8)
or multiplicative
integral (5.17)

Tabulated re-
sults of integra-
tion by convolu-
tion formula for
variocus t

Parametriec nor-
malized detailed
welghting functions
assigned for I1

Inverse Laplace
(5.45) or Fourier
transformation by
methods set ferth
in Chap. II1 .
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Yt s)=W*(t,s) X*(s), (5.42)

where

w"(t,sJ=3‘: w (4, T) e d, ' (5.43)
X ()= #(5,) 7, (5.44)

In (5.43), the Laplace transformations are carried out with re-
spect to the second argument with the parameter t = ts, and the /20

transform (5.43) is known as the parametriec operator transfer
function.

The result (5.42) is called the parametric transform of the
response Y at time t = ts to an input disturbance of specified

shape x and arbitrary time shift. The inverse Laplace transform
of the parametric response transform, i.e., the original at poilnt
£ .

s

LY (4, S =y* (1, 7,,), (5.45)

covers all possible intervals (Tm = var) of action of a disturb-
ance of the specified form on the system.

Thus, the conditions for transfer of the disturbance from the
input to the output of the nonstationary system are described by
the simple formula (5.42), in which the parametric transfer fune—
tion and the transform of the unshifted disturbance are multiplied.
Thus, although the answer to (5.42) is obtained for & fixed time
t = tS, the characteristic of the nonstationary system.is given in

terms of its parametrie function.

Let us illustrate the derivation of the parametrlie transfer
functlon with reference to transformation of Eq. (5.33) as an
example. If its right-hand side ¢(t) 1is regarded as a unit input,
then according to [26] the parametric transfer functlon can be de-~
termined by successive approximations. The first approximation

takes the form 1
a* (t5)= =
3+ (s—8)2ay{) + (s—dya () + an(f)
1

(5.46)

s34 83 (8) 2+ {3, () — 222 (O] s + 20 (&) — 61.{) + &2 (1)
where 3 = d/dt i1s the algebraized differentiation symbol.

Sinece the coefficients in the parametric transfer function
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become numbers when ts is fixed, the inverse Laplace transforma-
tion is carried out in the same way as for stationary systems Dby
the methods set forth in Chap. I1L.

- The table presents a summary of the characteristics that can
be used to specify a nonstationary vehicle for subseguent analy-
ses as an object of control.
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APPENDIXES

‘Appendix I
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COEFFICIENTS IN EQUATIONS OF MOTION AND TRANSFER FUNCTION

OF THE F=-101 AIRPLANE AS FUNCTIONS OF FLIGHT SPEED

AND ALTITUDE
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Figure I.1. Coefficlents of Equations
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Figure I.2. Coefficients of Transfer
Func tions.
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Appendix II

TRANSFER-FUNCTION COEFFICIENTS OF V-2 BALLISTIC MISSILE AS
FUNCTIONS OF TIME OF FLIGHT

'J.';F'l"r:\/}E _ . l. t,
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8 \ | / 200

\

4 \’K’ / Hilig
\\\ /// '

oo, — 100
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300,
b) :

Figure II.1. Transfer-Function Coef-
ficlents of Ballistic Missile as
Functlons of Time of Flight
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Appendix III

TABLES OF STANDARD AEROSPACE VEHICLE TRANSFER FUNCTIONS

Table III.1

TRANSFER FUNCTIONS OF THE VEHICLE IN THE LONGITUD-

INAL PLANE

Transfer-function notation - Form of transfer function
V) 1 “y .
vV — v —— 2 —_
Wft\(_s) () V2, ) A a‘"[so (% i as c!’) ST (cz’ o,
. 8(s) 1 [ (. ay .) (~ 5y ‘)]
8 (5) = ——— W (5) =—]z, -s2 ———cy ] s+ ezl eg ¢
g W,‘t‘(s.) [0 3 () =B T H(tu— eat\ o+ " Cu
2. : z . . z z
. ‘g W{’, (s) = .ﬂ W‘;‘l; (s) = ._!... a,,.{ c3; -+ % ca;,] s+ lcm (c21 — _ﬁi "'11) — a1 (cm 4+ —t cm)]l
3 t Bei(s) S LI as 8y s
% : 1T Zy .
& by, 3\(5) e a e - a, a,
8 e ) e e
B(S) 8 _i - " . zﬁe. . zﬁe, Y
-l — Wi {5} = z, -s?2+4a [ —£¢ s+a; ¢ Coq + —E'¢
W‘,t'(s) = %) ae-.( y=-3 | 8y 3 ( N o, 3 AL R o, 14
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TABLE IIL. 1, (CONT'D.)

\

Transfer-function notation

. Form of transfer function

Without consideration of
gravity component (lev-
el flight) ' (23 = 0)

H(Y
bels,

Wg:a (s) =

i

e

: o\ | :
L —en| et —Se )| -
s ay p

K-

"e., .

J}where

L] - » * - *
8 =83+ {ey) — ¢25) 87— (1023 + gy €13+ €fa3 + e14631) S —

'-— c;_i (033(!;1 + 015631').-— 0;4 (C;lcaa_. 631{.‘23)

|

H 1 zaé - ZGIeJ . |
Wﬁ,e(s) = —A—a&,e €31+ “;:‘133 § 4 | Caz| Coy— ';-B"- oy

Short-period motion

With consideration of gravity

component {2 #0)
e ey ) S S _
Wﬁe () = e (s) ‘ f’e(?): -~ ,[zaé 52 + (nfzae -'"aé) s-}—. naez?]
] S L.E & _— . . .
W“*e(s}_ T be(s) Wie® =", 7 [(Pagt 257 ) S+ ™, Lt ]
W" -(s.} IO N, W’h(s) e X gz (n b asn z".-—!- £y 40z
e L b — ba (5) ?"ef A [ °Ie, - aé(- L T) . i7e( = 19) L] Bé]_
- oty e ) *c;-S'Q'Vﬂ-}-QP
. ﬂy n__. Ny (S) W%A(S)=k¢w6 (S ' ku= R T ’

|where A =384 (ny + 2, + 7, ) §2 4 (zun.,-+ n,— 24, ) S 2gM,
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TABLE IIL 1, (CONT'D,)

Transfer-function notation

Form of transfer function

Short-period motien

where &=

2 f. &
“ae ¢+ ' Ge

-

"o 7

Wi?iotgtcomp::er::ial;\?f W (s) = — st .n,zaé—naL _ kT4l )
el flighty (z = 0) % A A®
©) where
a(s
W ()=—"-"— Rz, —n z
b bels) pm——t 2 g .
Z 0t -1, ey — nae
s WP (s) — N ) M SR g AT+
WP (5) = 8, (5 = sA =T
%e Ye (5)

Zn 40,

.
]

R%Z' -} .ﬂ& Z&e, .
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(TABLE III. 1, (CONT'D)

“Transfer~function

. notation Form of transfer function

'g ] fa5+ z@e(ni +r \ § + na‘aza + n. z‘.ei T‘fs?- 428 Tis -1
g w3 (s) = _ _
E el SA A*
g ( ) = (5) . e —
g‘ B = r Tl = e S ]
: AR Pagle T 7 “ig
A £
w)

b = (o + "T) V

1= l'l6 z + n. z5

o .e‘
_W"y (S) =k W:
5‘e“ [ e!‘
) where & = 52+ (ry + 2, + 1, ) s -+ 2,m + 1,
W';y )= Nuis)
el Bals)

A" =T3s2 4+ sTos + 1; Ty= l/-—-——-——-—‘ e
. Z Mty 1y

n:+ 2,+ﬂ¢-

2V z.n: + n,

fa=
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TRANSFER FUNCTIONS

TABLE III. 2

QF THE VEHICLE IN LATERAL MOTION

Transfer-function Coefficients of polynom:al A3s3 4 Aos? -+ A1$ + Ap in numerator
notation . of transfer function
Aa: 2'5 »
l wh © g (s}. SR
PN () Ao = aoi ot ot (nr + ip) zn ;
A1 = (z -+ nﬂ+ Qofir) Ia (@0l + fe— 2412 Bq) naw+ (lﬁn, _ nvl') zah;
Ag= ""’1 [~ ’t‘tg $) "am'l' (nr — nptg ) lﬁri
;i;, =1;
- oy (s) f . :
2 Wﬁx'(s)= Ag = Ine=1lettz ) +{2g + e+ 15 Vi o+ Ity 3
i3 4 (s) 1= Zpgllp =ty ) + (2 + 1 B ) g i
. Ay = (fgn, — npls) z_ﬁ?i-i- (ng + n,‘z,3 — tg %) tﬁ';-i+ {fp+ I,.za) "5'3:
Ag= — z,tgdg (nﬂ,lﬁiﬁ— I?“ﬁﬁ_)'

~
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TABLE IIL 2, (CONT'D.)

Transfer-function Coefﬁcienu of polynomial Agsd+ Aps?2 L As - Ap §n pumerator
notation -, _of iransfer function
' As =ty 2
Wou(s) = ———‘:‘; :3 2T By
k B -
Ar==tly, (g + )+ Iy (= G0y )= 23, By o+ mg);
Ao = = (ﬂqr]'tp -+ Ia'-r"ﬂa) Z.l..
Az= (l‘5 _ Za;‘.'-'" 12 8p— n,,. tg 9):
W‘l S) E_ﬂ'?)_
A Al-—’ab[zg‘}‘ﬂr‘l‘" + 1239 (a0-n; —n,)]+za Up—Lreny )+

Br(®)

+1gd (’b" + ng)] + P (tr—tg¥(z; + )}
0= Iaff(zg‘ﬂr + np) + tg g (agny — ",\zp)] + Z;,r V\Upnr — IRy —

—1g ﬂo gnyt+ nply)] + n,#,[zpl; + I, +tghy (uo.', - zp’:i)]
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TABLE IIL 2,

(CONT'D. )

\ Transfer-function Coefficients of pelynomial Aas3 4 Aos2 + Ays + Ap in mumerator
, notation ' of iransfer function
W () = L) A= g+ Solyf
5) =
" % (s) Av =y (o0l + ly = 271G+ by Cone + ny+ 27
Ao 2,y (r — B 1g 80) + Ly (e — iy g 30
- A=l
@ wy (5) 370
Wa'; (= 3a(s) Ag= 15 (Zﬁ + ny -+ n Y+ l’,n5 H
A= la (nﬂ + npzg—24n, tg 80) -+ "a \(lﬁ + I,zﬂ)
Ag= — z tg 3 (nﬁla + !Bnaa)
wou (s) = sl As =y
e tals) .f!.g——-::B {zB + le) + 4y (ty—Cony );

Ap= n,s (ZBIF‘— Igan) + Iy O agrg — zTn;i ¥
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TABLE IIL. 2, (CONT'D.)

Pransfer-function

Coefﬁcients of polynomial A;s3 + A232 + A1s + Ap in numerator

notation ~,  of transfer function
AQ— 15\ n& lgﬂO'
WT (s) o _.lgs_).—
ai_a\ B,a\(s) A= fqg\[;a -+ ar + -’lé +1g % (ﬂoﬂé = fy)] + ﬂaﬂ\[!r —tgd (25 + fp)):
A= [M[(ZB"' + ng) - tg g (gng — my25)] + nanm[?ﬁl' +
+ 1 -+ 1g 8 (ol — g Te)]
. Ba=lyt o+ zgny;
Coefﬂcients of polyno- | #

mial Vg4 4 Bys? + Bas? +
+Bys+By=Ain deuomlp-
tor of transfer function

By = fyny — ngly + 25 (lg+ n7) — @ U,na —~ )+ (It‘n. +np)— 2, n tg 9o
By = 5 (lyirte — "V-"’) + &g (I,np — Iar:,) + (nﬁlt;—- !an) +
+ 2, “’"B — fg—1gf (’t\’zﬁ + ag)li

Bo = 21 [{Irns— lf,n, 'i'- lg ﬁo (Iﬁﬂy— nﬁlt)

~
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TABLE HI. 3
SIMFLIFIED VEHICLE TRANSFER FUNCTIONS IN LATERAL MOTION
Tran;f:ggom;lcﬁon Form of transfer function
! y ¢
L ® wy () PR - LI __a, 1
aq
E T _J_(S_) W‘I (8)= la-a‘
' 15 "hg0 s+ )
: F.
e k
- W%ﬂ(s): s2-ns+my T§s2+2E2T2$+1
W‘P (S)= 4’(5) -
ir
d

\ bgi(s)

where!

By 1 n?
k= T =]/—; f2—
At 2 7 T 2)ng
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TABLE III 3, (CONT'D.)

'where

A =834 (a; + Ip) s+ (g — Lene + nply) s + iy — g,

T nggtfi%r;:‘:ﬂon Form of transfer function
12
- (s). 3 251"1 + zBEn,-s + (.z,,m‘n“3 4 zpnalr_) B
C w¥ ¥ (s) 407 T s [s2H(2g+nr)sHng +apzg— 2gng)]
z by (8) ==
3 ¥ ¥xi(s) & [17s2 +26T1s + 1] e Zylig + 2y g
= « where £ =
5 [T% §2 4= Q80T 98 + 11 . ng+ Rezg — Zpng
| g .
‘ : W'IJ (5) = _qi_(_i)_. W‘k (S) _ na_as -+ ﬂ“vt%l-i- ﬂaalf—
‘ : ’a 35 () B A
9
:
od 1 z 1, L, — lon,,
: 26 W‘;x(s).=°’1_($). WOx () = a@_+( ey F A a,a)s+np 3 Py
sg ) 2 () g .
. Sl
2°
FE: RS+ 0y fp+1
‘ g b —_ q’(s) :, _ b'r a‘rlp a‘r‘
g‘i Wu&v(s)— 3.:(5) Wair(s)-— A
G @
i I s24 (leng 4 nely 8- (ngly + 8, 1
5 o 01 () TP A i ) 8 (Pals  Tale)
E W)= ——-+ b A
=] . & Br (S)
]
(-4
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Appendix IV

TABLES OF BASIC CHARACTERISTICS OF VEHICLE'S ANGULAR MOTION AS A FUNCTION
OF DISTURBANCE

TABLE IV. 1

RESPONSE OF VEHICLE IN ANGULAR MOTION AS A FUNCTION OF THE TYPE OF
DISTURBING MOMENT AND THE POLES OF THE TRANSFER FUNCTION

k

) yamm of poles of transfer function W (s) = 7252 4 2¢Ts 4- 1
Real
" :
b= —(— &+ VEZT), B=o (~ e+ VEFT) >0
T <0 : |
X (5)=> x (¢) 32=-%—(_5_V52T1J 52=~T—(*e*v’e2+1)<0:
1 1
0, Ti=— To=—-
$>1 R

125 3[f)

k —
T2(s—B)(s—B)
_ & ( 1
TV E—T \s—f s—Bf

)

&
Ts—D(Tos+1)

kT ( T1 T2 )
T ooYEeErl \ Tis—1 Tos —1

~
na
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TABLE IV.1, (CONT'D.)

U, _— S S s _ )
t mput ___ __Nature of poles of transfer function "W (s) = ————————
: distuFl."bance . : - P24 2%Ts+1

. distutl e : .

exp(— ¢+ VE—1)— exp(—C+VE+T)—

. TVE = T mvest *

l-:—iﬁ[t] . —_— . & F 4
S —exp(—E—VE—1) - —exp{—€—VE+1) -
TYEeE—1 * wye+1

., T )
lmexp (—g— V& —1) o 1—exp(—§—~ VE—1)

e _—
_l'-"-a-—l‘llf} 2(1__.52_.51/52_1). ) 2("“52_&'@]
ke d—exp(—t+ lfeT—Tl)—;:- 1—esp(—£+ f.{-_"?i]%

T ereve =) 20 e2+ere+)

1 (exp B _ expﬁ-;t)+ 1 | (expi!lt expﬂa_:t)+

1k 1, TVE=T k= R AVETI \b—1 S,
- et
s—n & L T exp
B R e A & 2+ 26T+ 1

Gee/



TABLE IV. 1, (CONT'D,)

® s
<8
k
i mme | Nature of poles of transfer function W (s) = m
Rezal
1.
§|=?—(~-£+V52-—1); =';T(—E+VE"’+ >0
X($)>x@) az=—l—(—-e-1/ez‘"—‘1) ‘ =-TI—(—5~V52+1)<0:
’ . 1 1
~ 1 0 Ti=-— Tyg=—T——
§> §20 Ti=n =T
kvl exp gt exp B .. kvl exp fyf __exp Bat
! FVE=T( R o ) YO e (e e
v
v+1 _:_)t‘ ¢ Y] '\F('\-’-—-]_) ” v—2 —a"" )' ]
st + v 0 4 o WOE 4 +[(ds +¢] Wis) -

+ ... +WHD

WO )+ W Oi (O + T

A : .
—-ﬁ [X (ﬁl) exp ﬂsf'—X (?’2) exp Bgt] + 'Q_T_‘-_V'Efl‘

x() +

[ (1) exp Byt — X (Bo) exp Bat] +

wio ...
+ x(” (n

~

Ty
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TABLE 1v.1, (CONT'D.)

) : .
- Input . R Nature of poles of transfer function W(s)= m
disturbance |,
e Real
7 - ]
ke - expfyf  exp Bof )_!_ ke ( exp Byt __&xp Bof )
S Ssine | B (B?+m2 87 + w? AVEFI\Bi+a? B+
s24u2 - _
(. 2) +|W('u)[sin {wz‘—&—arclg[m }
‘ . ! Re W (jo)
—>-sin Qf - — ' . ———
32+Q2 . bt ] . . »
(0 =2) ;
’a‘ o - . ) ' . .. . E
(= De X | U@dexp b o Ui exp
“ ryVeE—1 UG +aR+ed™r A VEF1 LB+ +u]'
X Eropaer UBexphet ) - o __,“ LU (Ba) exp Byt }
e . T [(Ba+ o) +~2)‘+‘} : @24 92 0™
[sxnsat) ' | . ;
£4%e™ sin wt 2 exp (— af . 3 oV U@W (@) ]a= —a+ jo
Usts)=1; 2= 1 fexp ot [(‘ +3e o) J_”F‘“‘] =2 |
U](s)=2(3+ﬂ) : ) ) ,
Us(s)=2{3(s+
+0)2—w?]
Ug(s)=U(s -+
4-0){(5+9)2—a?]



chT

TABLE IV, 1, (CONT'D.)

Input

e Nature of poles of transfer fanction W (s) = IT.s'z”I;er_—m
Real ] .
O Ginr T N B G
X02x0 | p=te—ve=) || peL(ce—veFi<o
1 £>0; rl=%: T’EL;;!_
exp [ —(1—%)¢ -%—”-] zexp(l—-—x);;q fo?f“
Fre A e eve ) ' -

T,
z—-expf(—£+wﬂ+1)

zexp(z—lj?- yerxi
- by +z—l
z—exp 2 (—e +VEFT

z




£6T

TABLE IV.1, (CONT'D.)

X sin (—;,— ‘V 1— &%+ arccos E)

) k
' Nature of poles of transfer functi W (s) 2 ————
dishbance e O T ex function - W ()= ogz 1 2e7s 1 1
“‘Complex ] Tmaginary
1 —
p=— (= T=8); g=jQ
CX@) ) ﬂ'=-;—(~—e—;'V1—e2): pr=—jo
k _ k I 1 £Q2 ol
T4 oTs 41 T VI—8 " s—B 2o oM T e
100 (o
‘ _kexp(-—e?)‘sin“T— yY1--¢2 -i.sin -t——_-:kQ sin Qf
L T T
TYi1—z@
ekp(-—-ﬁ—.t—")
1,4 1--———-'_:_—_._,."{—'-—' )
:;;-:*Tllf) Yi— g 1— cos Q¢



6T

TABLE IV, 1, (CONT'D.)

k
Nature of poles of transfer function W(s) = ———————e—
T e P ©—Pay T
. Complex | Imaginary
1 =
p=— (—t+JVT=8) p=y8
X ()50 Br=r (=t~ VT E) b= — 2
1
0ZE<C ] E=0; Q='}"—
¢
T exp(—-e?,—) p Q2exp s
§ * T LI T BT —— .
a Va=mer e (T K
> ¢ T e in | Qf - arc ¢ 21
M + 9 exp ¢ Vot 5, Si 0s — Q2)
+are cos T2 + 28Ty + I) T2 4 26T -+ 1 ! e
¢
e (— 1T T exp (-— s—) (— 1)+l n
T N h— (Qf —-—)
— —) 158 cos + v +
v . YVim g s'”[r“ ot e 2
S'+1 -T'>t

- oy (WD
+ (v -+ 1} arc cos £] +- E W—(?!(i—)-—.,

[=0

v

E R AN aou
+ 5 HHv—2e)!

~

a3



66T

TABLE IV.1, (CONT'D,)

) , ) . k
digt,:‘l:g;m; . Mature of poles of transfer finction W(s)=7'152+2€1's+1
: ] Complex ° | [ - Imaginary
2 Ixy oy kA B exp( —_ 5‘;.—) ; ‘“%’-2,,,_1(-"‘“)2“
e L inl—V1—¢e Q| X (/)] sin | 2f—arctg —————— |+
boed 5 TV =g sm[r 1—E2 4 _ Emﬂ"
Im X (B} ) =)
hs ‘ -+ arc tg ————-——-] 4+
_:}Em: : ReX @ _
- . w=(0) .. wil) (o
i FTO 2O+ T Ok O+ O F - - -+ £ )
ot
kol exp (— E-——)
" sinet 5 o L X i (w sin Qf — Q sin wf) 4
St —>Sine VI + 28— NeT2 + iT(I—E) © D fut i wf} -
(w9 L — 2ty 1— &2
o — E2 e
Xsin[ T Vi—8 4 arctg T ]+

+ W (jo)i sin { wf + arctg [

Im W (jw) ]}

Re W (ju)

= 510 Qf
§24-92

(w0 = 2}

%_( sin Of — 2 cos 2f)

T



96T

TABLE IV. 1, (CONT'D.)

p ) £
Inputance : Nature of poles of uansfeer-funcuon W(.s) = sty %Ts 71
Complex o " Imaginary
i —
B=r(—+V1=1) B = jo;
X ()2 x () ﬁ'='§-l—(—~e—ﬂfl—52): . pr=—Jo
0<E<] | e=o;'g=TL
(=073 £LX @)} AT EAp— )
o 3 -;—]/i—__u-_—&—:'—exp (-— E--—) sin [“—}/1——[;2 + kR |x (jQ) sin [2f 4
X+ oyitar = _Imx @) ' Im X ()
) FarctE e R X (B) ] * +AC R X (j9) ]
[(s+e)2ear*+t |
= "™ sin wf, 0 ( ) ) s U@ W (@ :
Uy (s) =1 2oexp(—ot) { K 2 m)‘L“_E‘_] =—d+jo
Ul (65) =2(s + G) + vl Im exp. (Juwt) !+ aa -+ 51 T‘+1 1= ]-2‘“ }
Us(s) =
=2[3(s+0)?— u?]
Uy(s)=24(s+9) X
X [(s + 0)2 — a?]




L6T

TABLE IV.1, (CONT'D.)

: . : k
.. ‘ W o e ——
. muce Nature of poles of transfer function (_s) Tz L otTs k1
. N Complex s Imaginary
o S exp(-x.-—-l)&%— .
s X qlz]-# T X : X,_-_;[zlk{z——_l +
P ‘ . To LI ‘ 2 cos (x0T j)—22 cos [(i—-:.) 0T}
2 P11 T a7 S —_
2% sm [(1 *) T Vit arccos 6] ) 22—2zcos Ty + 1 }

X : T To . pamee
z2—22zexp ( — -?0' E)'cos -T—on-—E?_l.

S — ‘ A\
—zexp ?0-'5 sin:(l—;:—n Y- +Iarl: cos &)

2Ty
~ +hexp (-—"T— E)

“7)
z—1

-+




86T

‘TABLE IV.2

CONDITIONS OF MATRIX-FORM REPRODUCTION OF INPUTS IN THE FORM OF ASSIGNED FUNC-
TIONS THAT ARE SOLUTIONS OF SECOND-ORDER DIFFERENTIAL EQUATIONS

Coeffictent Inital values Normalized-welghting-function matrix
Assighed function s
83 ay Yo, $ro |En &1z
b bul | OV oh e &n |
_ 01 . 1) ¢
VE£C 10D o O_I c v l o 1 i
0 1 . 1[0 e"’—l'
t ‘ . :
R N e |'s
1 —enl
0 1 11— (1—e)
B (1—e™}+C1[s) | ¢ oB a
0 —¢
0 e—w—dl
.




66T

TABLE IV. 2, (CONT'D,)

Coecfficient .
°:; a.:f-i? Initial values Normalized-weighting-function matrix
Assigned function
E LI b34| ! ' g L2
Yo+ ‘P 0+ l '
bas_ but I ¢ o+ £ g |
| . lro 1 b — g™t e — oo 1
Be" 4 Ce : ] ‘ ! B+C 78 +8C - !
—78 n+ 8 a0 (e — e1f) et — e |1—0
‘ 0 1 cos ¢ —~ sin Qf
Asin (2 +9) I_onl . | Asing - AQcosg ' Q
' — Qsin cos 2f

n .. 1.
Qf —e —— Q — Q
a 1 cos a sin Qf o sin Qf y

Ae sin (%% + ¢) =2+ 09 2 Asing |AQcosgt+Ansing

2.t 02
_"l-; sin Qf coth+-§—-sith




14,
15.
16,

17.

REFERENCES /2.

Abgaryan, K.A. and Rapoport, I.M. Dinamika Raket (The Dynamics

of Rockets). Moscow, "Mashinostroyeniye,”" 1969.

Appazov, R.F., Lavpov, S.S8. and Mlshin, V.P. Balllstika Uprav-
lyayemykh Raket Dal'nego Deystviya (The Ballistics of Gulded
Long-Range Missiles). Moscow, "Nauka," 1966.

Barkovskily, V.V., Zakharov, V.N. and Shatalov, A.S. Metody
Sinteza Sistem Upravleniya {Methods of Control-System Synthe-
gis). Moscow, "Mashinostroeniye," 1969.

Blakelock, J.H. Automatie Control of Alrcraft and Missiles
(Russian Translation). Moscow, "Mashinostroyeniye," 1969.

Bodner, V.A. and Kozlov, M.S. Stabilizatsiya Letatel'nykh
Apparatov 1 Avtopiloty (Aerospace-Vehicle Stabilization and
Automatic Pilots), Moscow, "Oborongiz," 1961.

Bodner, V.A. Teoriya Avtomatilicheskogo Upravleniya Poletom
(Theory of Automatic Flight Control). Moscow, "Nauka," 1964.

Byushgens, G.8. and Studnev, R.V. Dinamika Prostranstvennogo
Dvizheniya Samoleta (Dynamlcs of the Three-Dimensional Mo-
tion of the Airplane). Moscow, "Mashinostroyeniye," 1967.

Gantmakher, F.R. and Levin, L.M. Teoriya Poleta Neupravlyayemn-
ykh Raket (Flight Theory of Unguided Missiles). Moscow,
Fizmatgiz, 1959.

Gantmakher F.R. Teoriya Matrits {(Matrixz Theory). Moscow,
"Nauka," 1967.

Gorbatenko, S.A. Makashov, E.M., Polushkin, Yu. F. and Shef-
tel', L.V. Mekhanika Poleta (The Mechanics of Flight).
Moscow, "Mashinostreyeniye," 1969.

Jury, E. Sampled-Data Control Systems (Russian Translation).
Edited by Ya. Z. Tsypkin. Moscow, "Fizmatgiz," 1963.

Dobrolenskliy, Yu. P. Dinamika Poleta v Nespokoynoy Atmosfere
(The Dynamics of Flight in the Disturbed Atmosphére).
Moscow, "Mashinostroeniye," 1969.

Dobronravov, 0.Ye. and Kirilenko, Yu.l. Osnovy Avtomatiches-
kogo Regulirovaniya. Avtomaty 1 Sistemy Upravlieniya
Letatel'nykh Apparatov (Fundamentals of Automatic Control.
Aerospace Vehicle Automatic Devices and Control Systems).
Moscow, "Mashinostroyeniye," 1965.

Kazakov, IT.Ye. Statisticheskiye Metody Proyektlirovaniya
System Upravleniya (Statlistical Methods of Control-System
Design). Moscow, "Mashinostroyeniye,” 1969,

Kolesnikov, K.S. Zhidkostnaya Raketa Kak Ob"yekt Regulirova-
niya (The Liquid-Propellent Rocket as an Object of Control).
Moscow, MMashinestroyeniye,” 1969.

Lebedev, A.A. and Cherncobrovkin, L.S. Dinamika Poleta Bespi-
lotnykh Letatel'nykh Apparatov (Flight Dynamics of Pllot-
less Aerospace Vehicles). Moscow, Oborongiz, 1962.

Mikishev, G.N. and Rabinovich, B.I. Dinamlka Tverdogo Tela s

“Polostyami, Chastichno Zapolnennymi Zhidkost'yu (Dynamics



18,

19.
20,

21.

22,

23,

24,
25.

26.

27;

28.

29.

30.

31.

of a Solid Body with Cavities Partly Fllled with Liquid).
Ed%ggd by A.Yu. Ishllnskly. Moscow, "Mashinostroyeniye,"
1960.

Ostoslavskiy, I.V. Dinamlke Polets Trayektoril Letatel'nykh
Apparatov (Flightpath Dynamics of Aercspece Vehicles).
Moscow, "Mashinostroyeniye," 1969,

Ostoslavskly, I.V. Aerodinamiks Samoleta (Alrplane Aerodynam-

ics). Moscow, Oboronglz, 1957.

Ostoslavskily, I.V. and Kalachev, G.S. Prodol'nays Ustoychi-
vost' 1 Upravlvayemost' Samoleta (Longitudinal Stability
and Controllability of the Airplane). Moscow, Oborongiz,
1957. '

Ostoslavskily, I.V. and Strazheva, I.V. Dinamlka Poleta.
Ustoychivost' 1 Upravlyayemost' Letatl'nykh Apparatov
(The Dynamlcs of Flight., Stabllity and Controllablllity
of Aerospace Vehicles)., Moscow, "Mashinostroyeniye," 1355,

Svyatodukh, V.K. Dinamika Prostranstvennogo Dvizhenlya
Upravlyayemykh Raket (Dynamics of the Three-Dimenslonal
Motion of Gulded Missiles). Moscow, "Mashinostroyeniye,"
1959. '

Sovremennyye Metody Proyektirovaniya Sistem Avtomatichesko-
go Upravleniya. Analiz 1 Sintez (Modern Methods of Auto-
matic Control System Design. Analysis and Synthesis).
[General Editors: B.N, Petrov, V.V. Solodovnlkov, and
Yu.I. Topcheyev. Moscow, "Mashinostroyenlye," 1967.

Tsypkin, Ya.Z. Teoriya Lineynykh Impul'snykh Sistem (The
Theory of Linear Pulsed Systems). Moscow, Filzmatgilz, 1963,

Shatalov, A.S. Strukturnyye Metody v Teoril Upravlenlya 1
Elektroavtomatike (Structural Methods in the Theory of

' Control and Electroautomation). Moscow, Leningrad,
Gosenergoilzdat, 1962,

Shatalov, A.S. Preobrazovaniya Signalov i Izobrazhayushch-
ikh Funktsiy Obobshchennyml Lineynymi Sistemami Auto-
maticheskogo Upravleniya (Transformation of Slgnals and
Functions Representing them by Generalized Linear Auto-
magic Control Systems). Moscow-Leningrad, Gosenergolzdat,
1962.

Lee, S.Y. A Time-Optimal Adaptive Control System Via Adap-
tive Switeching Hypersurface, IACC, Preprints of Technical
Papers, 1967, pp. 484-451.

Afonin, P.A., Golubev, I.S., Kolotkov, N.I., Manucharov,
V.A., Novikov, V.N., Khmelevskiy, G.V., Chernobrovkin,
L.3., and ChHurakov, V.N. Bespilotnyye Letatel'nyye
Apparaty (Pilotless Aerospace Vehicles). Moscow, "Mashino-
stroyeniye," 1967. : .

Barrer, M., Zhomott, A., Vebek, B.F., and Vanderkerkkhove,
Ragetnyye Dvigateli (Rocket Engines), Moscow, Oborongiz,
1862, :

Shuneyko, I.I. Winged Spacecraft. In Collection Entitled:
Raketostroyeniye (Rocket Building), Moscow, Institute of
Seientific Information, USSR Academy of Scilences, 1966.

Astronautics and Aercnautics, September, 1964, Vol. 2,
No. 9; December 1965, Vol. 3, No. 12; October 1966,

Vol. 4, Neo. 10.

201

% VU.S. GOVERNMENT PRINTING OFFICE: 1874—T739-160/12)



